

V47-660 kW

with OptiTip[®] and OptiSlip[®]

One or two generators

The V47-660 kW is delivered as standard with a single generator, which is highly efficient in the vast majority of wind conditions. However, a two-generator version is also available. This model contains a second, smaller, generator for use in wind speeds as low as 7 m/s. This means a lower sound level where it is most needed, as well as more efficient exploitation of modest wind conditions.

Optimal pitch with OptiTip[®]

Just like all other Vestas turbines, the V47-660 kW turbine is equipped with microprocessor-controlled OptiTip® pitch regulation, which ensures continuous and optimal adjustment of the angles of the blades in relation to the prevailing wind. The OptiTip® system makes it possible to find the best possible solution to the often contradictory requirements for high output and low sound levels, depending on the location.

OptiSlip[®]

As mentioned above, the V47-660 kW turbine features the unique generator principle OptiSlip®, which allows both the rotor and the generator to vary their RPM by up to 10% to cope during violent gusts of wind. In addition to minimising the load on various parts of the turbine, the OptiSlip® system also ensures an appreciably better power quality.

Lightning protection

The V47-660 kW turbine is equipped with Vestas Lightning Protection, which protects the entire turbine from the tips of the blades to the foundations.

Flexible blades

Vestas always measures and tests all new products down to the smallest detail before releasing them on the market. The flexible blades underwent a 6-month dynamic distortion test under extreme loads – more than they would normally be exposed to in their 20-year service lives. The maximum loads and outward distortion of the blades were then checked in a static test. The blades passed all the tests and now make an appreciable contribution to the efficient production of the V47-660 kW turbine.

Proven Performance

We have spent many months testing and documenting the performance of this Vestas turbine. When we were finally satisfied, we ran one last check by allowing an independent organisation to verify the results. This is standard practice at Vestas – a procedure we call Proven Performance. It is your guarantee that your Vestas turbines meet the very highest requirements for energy production, availability factor, power quality and sound levels.

2

R,

16

15

17

18

19

13

14

10

1. Blade	11. Service crane
2. Blade hub	12. Pitch cylinder
3. Blade bearing	13. Machine foundation
4. Main shaft	14. Tower
5. Secundary generator	15. Yaw control
(V47-660/200 kW)	16. Gear tie rod
6. Gearbox	17. Yaw ring
7. Disc brake	18. Yaw gears
8. Oil cooler	19. VMP top
9. Cardan shaft	control unit
10. Primary generator	20. Hydraulic unit

12

	ROTOR	
	V47-660 kW	V47-660/200 kW
Diameter:	47 m	47 m
Area swept:	1,735 m²	1,735 m²
Revolution speed:	28.5	26/20
Number of blades:	3	3
Power regulation:	Pitch/OptiSlip®	Pitch/OptiSlip®
Air brake:	Feathered	Feathered
	TOWER	
Hub height (approx.)	:40-45-50-55 m	40-45-50-55-60-65 m
	OPERATIONAL DATE	1
Cut-in wind sneed.	4 m/s	3.5 m/s
Nominal wind	1 111/ 5	5.5 11/ 5
sneed (660 klll):	15 m/s	16 m/s
Ston wind sneed:	25 m/s	25 m/s
	20 11.0	20
	GENERATOR	
Large generator:	Asynchronous	Asynchronous
	with OptiSlip®	with OptiSlip®
Nominal output:	660 kW	660 kW
Operational data:	50 Hz	50 Hz
	690 U	690 U
	1,515-1,650 rpm	1,515-1,650 rpm
Small generator:		Asynchronous
Nominal output:		200 kW
Operational data:		50 Hz
		690 U
		1,500-1,516 rpm
	GEARBOX	
Tune:	Planet	Planet
.960.	/parallel axles	/parallel axles
	CONTROL	
Tune:	Microprocessor-	hased control of all
igpe.	turbine functions	s with the ontion of
	remote monitorio	na.
	OptiSlip® nutnut r	equiation and
	OptiTip [®] pitch rea	ulation of the blades.

Actual measurements of a Vestas 660 kW turbine with OptiSlip®

Time

Time

OptiSlip® allows the revolution speeds of both the rotor and the generator to vary by approx. 10%. This minimises both unwanted fluctuations in the grid supply and the loads on the vital parts of the construction.

Worldwide popularity

If you stand next to one of these turbines and look up, it is tempting to think that the V47-660 kW model must be the largest turbine Vestas has ever built. It is not, although it is no more than a few years since this turbine was launched as the Vestas flagship.

When the V47-660 kW turbine was introduced in 1997, it was a genuine

innovation. The blade design in particular set new standards, but the turbine as a whole, with its futuristic design and innovative technology, became a model for the giant turbines that have since begun to roll off the production lines.

Today, the V47-660 kW model is still a popular turbine that exploits the power

of the wind reliably and efficiently whereever it is erected. Turbines of this model currently operate in locations as diverse as New Zealand, California, Spain, Germany and South Korea – and in many other places where there is a demand for profitable wind power.

Associated Companies

Vestas - Danish Wind Technology A/S Smed Hansens Vej 27 · DK-6940 Lem Denmark Tel. +45 96 75 25 75 Fax +45 96 75 23 42 vestas-dwt@vestas.dk

Vestas - Scandinavian Wind Technology A/S Smed Hansens Vej 27 · DK-6940 Lem Denmark Tel. +45 96 75 25 75 Fax +45 96 75 24 80 vestas-swt@vestas.dk

Vestas - International Wind Technology A/S Smed Hansens Vej 27 · DK-6940 Lem Denmark Tel. +45 96 75 25 75 Fax +45 96 75 23 39 vestas-int@vestas.dk

Cotas Computer Technology A/S Paludan-Müllers Vej 82 · DK-8200 Århus N Denmark Tel. +45 86 10 22 55 Fax +45 86 10 47 27 info@cotas.dk

Vestas - American Wind Technology, Inc. 19020 N. Indian Avenue, Suite 4-C P.O. Box 278 North Palm Springs · Ca 92258 USA Tel. +1 760 329 5400 Fax +1 760 329 5558 Vestas Deutschland GmbH Otto-Hahn-Strasse 2 D-25813 Husum/Nordsee Germany Tel. +49 4841 971 0 Fax +49 4841 971 160 vestas@vestas.de

Vestasvind Svenska AB Åkarevägen 17 · S-31132 Falkenberg Sweden Tel. +46 346 59050 Fax +46 346 59055 info@vestasvind.se

Vestas - Nederland Windtechnologie B.V. Dr. Langemeijerweg 1 a Postbus 63 · NL-6990 AB Rheden Netherlands Tel. +31 264971500 Fax +31 264971555

Wind Power Invest A/S Smed Hansens Vej 27 · DK-6940 Lem Denmark Tel. +45 96 75 25 75 Fax +45 96 75 24 36 vestas@vestas.dk.

Joint Venture Companies

Vestas RRB India Ltd. 161, Sukhdev Vihar New Delhi 110 025 India Tel. +91 11 6838365 Fax +91 11 6835160 VRRB@gndel-vestas.global.net.in

Gamesa Eólica s.a. Poligono Comarca 1 (Agustinos) E-31013 Pamplona Spain Tel. +34 9 48 30 90 10 Fax +34 9 48 30 90 09 telemando.gamesaeolica@nexo.es

IWT - Italian Wind Technology, S.r.l. Via Ariosto 12 · Zone Industriale I-74100 Taranto Italy Tel. +39 099 4 606 111 Fax +39 099 4 606 333

With quality and care we use the wind to create competitive, environmentally friendly energy

Vestas Wind Systems A/S Smed Sørensens Vej 5 DK-6950 Ringkøbing Denmark Tel. +45 96 75 25 75 Fax +45 96 75 24 36 vestas@vestas.dk www.vestas.dk

General Specification 660 kW Variable Slip Wind Turbines

V47 - 660 kW

V47 - 660/200 kW

Item no.: 943111.R4

Vestels.		Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kV	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	2 of 27

Vestas 660 kW, Variable Slip Wind Turbines

Cont	ents.	Pa	ge
1.	Intro	oduction	. 3
2.	Тур	e Approvals	. 3
3.	Clin	natic Conditions	.3
	3.1 3.2 3.3	Stop wind speed / restart wind speed Site specific loads Low Temperature version	. 4 . 4 . 4
4.	Pow	er curve and annual production (calculated)	. 6
	4.1	V47 - 660 kW 4.1.1 V47-660 kW power curve	. 6 . 7
	4.2	V47 - 660/200 kW 4.2.1 V47-660/200 kW power curve	. 8 . 9
	4.3	Production/year	10
5 No	ise en	nission	11
		5.1.1 Noise level: (sound power level)	11
6. Va	riabl	e slip, Optislip [®]	12
7. G	enera	l specification	13
	7.1	Structure of machinery	13
8.Te	chnic	al specifications	14
		8.1.1 Rotor	14
		8.1.2 Tubular tower	14
		8.1.3 Foundation sections	14
		8.1.4 Gear, V47-660 kW	15
		8.1.5 Gear, V47-660/200 kW.	15
		8.1.6 Large generator	15
		8.1.7 Small generator	15
		8.1.8 Controller:	16
		8.1.9 Remote monitoring:	16
		8.1.10 Weight:	16
9. In	stalla	tion	17
10.	Gen	eral reservations	17
11. E	nclos	sure 1, power curve measurement	19
	11.1	Power curve measurement on the V47-660kW Wind turbine	19
	11.2	Power curve measurement on the V47-660/200kW Wind turbine	22
	11.3	Enclosure 2, noise measurement	24
	11.4	Noise resume of VESTAS V47-660 kW Wind Turbine	24
	11.5	Noise resume of VESTAS V47-660/200 kW Wind Turbine	26

Vestes.		Vestas 660 kW Variable Slip Wind Turbine, V47-660 kW and V47-660/200 kW						
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	3 of 27	

1. Introduction

The Vestas 660 kW wind turbines are based on the experience gained from the V39-500 kW and V39/42/44-600 kW wind turbines.

The Vestas 660 kW wind turbines are available in two versions with the same swept areas and the same climatic conditions. The difference between the two versions consists in the V47-660 kW having a synchronous rotor speed of 28.5 rpm and one generator. The V47-660/200 kW has two seperate generators running at two different synchronous speeds (26 and 20 rpm).

The V47 turbines uses the superior variable slip concept, which was introduced in the Vestas 600 kW turbines (V39/42/44). This feature ensures a smooth power output and at the same time reduces the loads significantly.

The special Vestas Optitip[®] feature is standard on both Vestas 660 kW turbines. This feature provides the optimum tip angle at all times with respect to power performance and noise emission.

2. Type Approvals

The wind turbines are designed in accordance with IEC 1400-1 , DS472 ("Teknisk Grundlag"), Germanisher Lloyd IV part 1 and NEN 6096/2.

3. Climatic Conditions

The wind climate for a given site is normally specified by a Weibull distribution. The Weibull distribution is described by an A and a C factor. The A factor is proportional to the mean wind speed and the C factor defines the shape of the Weibull distribution or in other words long term variations of hours at different wind speeds. Turbulence is the factor which describes short term wind variation/fluctuations. In the table below the design wind conditions for the Vestas 660 kW wind turbine are listed.

Version Mean wind speed		Turbulence	Hub height ^{a)}	
V47 - 660 kW	Max. 10 m/s	Max. 17%	40 - 55 m.	
V47 - 660/200 kW	Max. 10 m/s	Max. 17%	40 - 65 m.	

^{a)} Vestas modular tower.

Table 1 Wind speed and turbulence according to IEC/GL at hub height.

The stop wind speeds are a design parameter. The maximum wind speeds are also important for the loads on the wind turbine. The maximum allowable extreme wind speeds are listed in table 2 next page.

Vestes.		Ves	tas 660 kW	Variable Slip	Wind Turbine, V47-660 kV	V and V47- ϵ	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	4 of 27

Version Max. 10 min. mean		Max. 3 sec. Gust mean max. ac		Stop wind speed/ Restart wind speed	
V47 – 660 kW	50 m/s	70 m/s	10 m/s ²	25 m/s 20 m/s	
V47 – 660/200 kW	50 m/s	70 m/s	10 m/s ²	25 m/s 20 m/s	

Table 2. Wind speed according to IEC/GL.

The above tables can be used to determine if a Vestas V47 turbine is appropriate for a given site in other countries than Denmark, Germany and the Netherlands. For these countries table 3 below must be consulted.

Country	Turbine	Cond	Hub height a)	
		Class	Stop/start	meter
Denmark	V47-660	all classes	25 / 20 m/s	40 - 55
Denmark	V47-660/200	all classes	25 / 20 m/s	40 - 65
Germany	V47-660/200	DIBt III	20 / 18 m/s	55 - 65
Netherland	V47-660	Den Helder	25 / 20 m/s	40 - 55
Netherland	V47-660/200	Den Helder	25 / 20 m/s	40 - 65

^{a)} Vestas modular towers

Table 3. Country specific conditions and approvals.

Concerning park installations the conditions of section 9 are to be observed, and for other conditions Vestas must be consulted.

3.1 Stop wind speed / restart wind speed

The turbine stops for high wind speed when the exponential mean wind speed averaged during 100 seconds is above the stop wind speed level.

The turbine restarts when the exponential mean wind speed averaged during 100 seconds, is below the reset wind speed, and stays below the stop wind speed for 1 minute.

3.2 Site specific loads

The turbines can be placed under various climatic conditions: where the air density, turbulence intensity and the mean wind speed are the parameters to be considered. If the turbulence intensity is high the turbine loading increases and the turbine lifetime decreases, on the contrary the loading will be reduced and the lifetime extended if the mean wind speed or/and turbulence is low. Therefore, the turbines can be placed on sites with high turbulence intensity if the mean wind speed is suitable low. Vestas has to examine the climatic conditions if the prescribed is exceeded.

3.3 Low Temperature version

The VestasV47-660 kW turbine is also available as a Low Temperature version.

	-1	Vestas 660 kW Variable Slip Wind Turbine, V47-660 kW and V47-660/200 kW					
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	5 of 27

This version is equipped with special heat treated steel components when necessary, and the nacelle has built in heaters. Also the wind vane and anemometer are heated. Other modifications have also been necessary to enable this version to operate down to -30° C. This version is designed for a temperature range from -30° C to $+40^{\circ}$ C. (Standard -20° C to $+40^{\circ}$ C). For non-operational conditions a temperature range of -40° C to $+40^{\circ}$ C is allowed. Please note that because of the higher density of the air at low temperatures, the LT version has lower extreme wind speed limits.

Version Max. 10		Max. 3 sec.	Gust	Stop wind speed/	
min. mean		mean	max. acc.	Restart wind speed	
V47 – 660 kW, LT	42.5 m/sec.	59.5 m/s	10 m/s ²	25 m/s / 20 m/s	

Table 4. V47-660 kW LT wind speed according IEC 1400-1.

Vestes.		Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	6 of 27

4. **Power curve and annual production (calculated)**

See enclosure 1 for the measured power curve.

4.1 V47 - 660 kW

Power curves calculated on basis of NACA63.600 and FFA-W3 airfoil data.

Wind speed: 10 minutes average value, at hub height and orthogonal to the rotor plane.

Parameters for calculated curves:

s: 50 Hz/60 Hz Tip angle: Pitch regulated. Turbulence: 10 %. Rotor speed (Synchr.): 28.5 rpm.

V10	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
4.0	2.9	0.6	1.1	1.5	1.9	2.3	2.7	3.1	3.5
5	43.8	36.2	37.5	38.9	40.3	41.7	43.1	44.5	45.8
6	96. 7	81.8	84.5	87.2	89.9	92.6	95.4	98.1	101
7	166	141	146	150	155	159	164	168	173
8	252	215	222	228	235	242	248	255	262
9	350	300	309	318	327	337	346	354	363
10	450	392	402	413	424	435	446	455	464
11	538	480	491	502	512	523	534	542	549
12	600	554	563	572	580	589	598	602	607
13	635	607	612	618	623	629	634	636	639
14	651	637	640	643	646	648	651	652	653
15	657	652	653	654	655	656	657	658	658
16	659	657	658	658	659	659	659	659	659
17	660	659	659	660	660	660	660	660	660
18	660	660	660	660	660	660	660	660	660
19-25	660	660	660	660	660	660	660	660	660

EL-power [kW] as a function of wind speed [m/s] and air density [kg/m³]:

Vestas.			Vestas 660 kW	Variable Slip	Wind Turbine, V47-660 kV	V and V47-6	660/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	7 of 27

4.1.1 V47-660 kW power curve

V47-660 kW power curve

The curve will vary at other turbulence and air density values.

The V47-660 kW is especially developed for sites where noise concerns are less critical.

Vestas.		Ves	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	8 of 27

4.2 V47 - 660/200 kW

Power curves calculated on basis of NACA63.600 and FFA-W3 airfoil data.

Wind speed: 10 minutes average value, at hub height and orthogonal to the rotor plane.

Parameters for calculated curves:	50 Hz/60 Hz
Tip angle:	Pitch regulated.
Turbulence:	10 %.
Rotor speed (Synchr.):	26 and 20 rpm.

EL-power [kW] as a function of wind speed [m/s] and air density [kg/m³]:

V10	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
4	5.3	0.8	1.6	2.4	3.2	4.1	4.9	5.7	6.5
5	44.9	35.2	37.0	38.8	40.5	42.3	44.1	45.8	47.6
6	95.4	79.0	82.0	85.0	88.0	91.0	93.9	96.8	99.7
7	161	136	141	145	150	155	159	163	168
8	242	206	213	219	226	233	239	246	252
9	334	285	293	302	311	320	329	338	347
10	426	366	377	389	400	410	421	432	442
11	511	446	459	471	484	495	505	516	526
12	577	519	531	543	556	564	573	581	589
13	620	578	587	597	607	612	618	623	628
14	644	619	625	631	637	640	643	645	648
15	654	642	645	648	652	653	654	655	656
16	658	653	655	656	657	658	658	658	659
17	660	658	658	659	659	659	660	660	660
18	660	659	660	660	660	660	660	660	660
19-25	660	660	660	660	660	660	660	660	660

Vestas.		v	/estas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	9 of 27

4.2.1 V47-660/200 kW power curve

The curve will vary at other turbulence and air density values.

The V47-660/200 kW is especially designed for sites, where noise requires special attention.

Vestas.		v	estas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	10 of 27

4.3 **Production/year**

Production/year for different mean wind speeds and different Weibull distributions.

Mean wind	l speed m/se	ec. Producti	ion in MWh	(C = 2.0)	
6		7	8	9	10
V47 - 660 kW	1366	1890	2377	2803	3155
V47 – 660/200 kW	1321	1825	2307	2729	3081

Mean wind speed m/sec. Production in MWh ($C=1.5$)								
	6	7	8	9	10			
V47 - 660 kW	1476	1894	2254	2544	2766			
V47 – 660/200 kW	1434	1844	2199	2488	2709			

Mean wind speed m/sec. Production in MWh ($C=2.5$)							
	6	7	8	9	10		
V47 - 660 kW	1259	1843	2411	2924	3363		
V47 – 660/200 kW	1216	1777	2329	2835	3273		

Danish roughness class at hub height 45 meter - Beldringe correction. Production in MWh								
Turbine	Class 0	Class 1	Class 2	Class 3				
V47 - 660 kW	2513	1756	1454	1023				
V47 - 660/200 kW	2465	1702	1406	991				

		V	/estas 660 kW	Variable Slip	wind Turbine, V47-660 kW	V and V47-0	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	11 of 27

5 Noise emission

See enclosure 2, Noise resume.

5.1.1 Noise level: (sound power level)

According to DK 304	V47-660 kW	V47-660/200 kW
In dB (A) re 1 PW	102	100

The noise emission for the V47-660/200 kW is given for the large generator in operation at a synchronous rotor speed of 26 rpm, as the generator shift is approximately at 7 m/sec and the reference wind speed for the noise measurements is 8 m/sec. The noise emission of this turbine will be significantly lower at low wind speeds, when the turbine is operating at the lower synchronous rotor speed (20 rpm) with the small generator connected.

Wind speed measured in 10 meters height. Roughness length = 0,05 m and hub height = 45,7 m (45 m tower).

The wind speed from 10 meters height can be calculated to a wind speed in 45,7 m height, by using the multiplying factor 1,2868 (valid only for a roughness length and 0,05 m). Example,

$V_{10 meter} = 5 m/s$	==>	$V_{45,7 meter} = 6,43 m/s$
$V_{10 meter} = 8 m/s$	==>	$V_{45,7 meter} = 10,29 m/s$

	Vestas 660 kW Variable Slip			Wind Turbine, V47-660 kW	V and V47-6	60/200 kW	
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	12 of 27

6. Variable slip, Optislip[®]

So far the normal way of operating asynchronous wind turbine generators has been that of constant speed. An induction generator operates with almost constant speed normally within 100% to 101% of nominal speed. For a four pole generator this means operation from 1500 rpm (no load) to 1515 rpm (full load) at 50 Hz frequency. This small variation is considered insignificant, and this is why operation mode is called constant speed.

When the wind speed changes it will result in corresponding power output changes. When nominal power is reached power fluctuations are undesirable. Vestas introduced pitch regulation because this feature enables maximum power to be limited to nominal as an average at high wind speeds. However, with a fixed speed generator, power fluctuations are so fast that it is only possible to keep the average power constant, and therefore rapid fluctuations will occur. These rapid fluctuations contribute to the loading of the turbine. In order to minimise the loads Vestas introduced the variable slip concept together with the V39/42/44-600 kW wind turbine and reused this concept for the Vestas V47 turbine. This feature means that it is possible electronically to vary the slip within 10% (1500 - 1650 rpm).

The variable slip feature is used when a wind gust hits the rotor. The controller then allows the speed of the generator to increase slightly in response to the gust. At the same time the pitch system turns the blades to a less aggressive angle and thereby decreases the rotor rpm. The result is a 100% constant and smooth power output with a minimum of loads on; blades, main shaft and gearbox.

The variable slip is a very simple, reliable and cost effective way of achieving load reductions compared to more complex solutions such as full variable speed using full scale converters.

	-1-1-1.	Vestas 660 kW Variable Slip Wind Turbine, V47-660 kW and V4			V and V47-6	60/200 kW	
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	13 of 27

7. General specification

7.1 Structure of machinery

Structure of V39/V42/V44-600 kW and V47-660 kW wind turbine.

- 1. Base frame
- 2. Main shaft
- 3. Blade hub
- 4. Blade
- 5. Blade bearing
- 6. Gearbox
- 7. Gear tie rod
- 8. Disc brake

- 9. Generator
- 10. Cardan shaft
- 11. Hydraulic unit
- 12. Yaw gear motor
- 13. Yaw ring
- 14. Yaw control
- 15. VMP top control unit
- 16. Small generator
- 17. Generator shift box

	Vestas 660 kW Variable Slip		p Wind Turbine, V47-660 kW and V47-660/200 kW				
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	14 of 27

8.Technical specifications

8.1.1 Rotor

	V47-660 kW	V47-660/200 kW
Diameter:	47 m	47 m
Swept area:	1735 m ²	1735 m ²
Rotational speed, rotor:	28.5 rpm	26/20 rpm
Rotational direction:	Clockwise (fr	ront view)

8.1.2 Tubular tower

Top diameter (for all towers):

2.0 m Exact Hub Height Bottom diameter

Туре	Hub Height	Bottom diameter	Weight
2-parted, modular tower (40 m)	40.7 m	3.0 m	approx. 28900 kg
2- parted, modular tower (45 m)	45.7 m	3.0 m	approx. 33000 kg
2- parted, modular tower (50 m)	50.1 m	3.3 m	approx. 38000 kg
2&3- parted, modular tower (55 m)	55.1 m	3.3 m	approx. 50700 kg
3- parted, modular tower (60 m)	59.7 m	3.6 m	approx. 58500 kg
3- parted, modular tower (65 m)	64.6 m	3.6 m	approx. 66400 kg

The exact hub height includes 0.4 m (distance from foundation section to earth).

Paint system, outside:

Surface treatment:	Metallizing + painting
Sand blasting:	SA 3 ISO 8501-1
Metallizing:	DSI/ISO 2063, 60 µm Zn
Sealing with twocomponent	
epozyprimer:	Approx. 20 μm
Primer:	Min. 90 μm
Top coat:	UV resistant, min. 50 µm
Corrosion class (DS/R 454):	3
Paint system, inside:	
Surface treatment:	Paint
Sand blasting:	SA 2.5 ISO 8501-1
Zinciferous primer:	Min. 40 μm
Top coat:	Min. 100 μm
Corrosion class (DS/R 454):	2

8.1.3 Foundation sections

Туре	Height	Max. diameter	Weight
For 35,40,45 m modular tower	2.1 m	3.2 m	approx. 3100 kg
For 50,55 m modular tower	2.1 m	3.5 m	approx. 3400 kg
For 60,65 m modular tower	2.1 m	3.75 m	approx. 4500 kg

	-fa	١	/estas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	15 of 27

8.1.4 Gear, V47-660 kW

Type: Ratio: Planetary/helical gear 52.6514

8.1.5 Gear, V47-660/200 kW

Type:Planetary/helical gearRatio:58 & 75

8.1.6 Large generator

Type:	Asynchronous, variable slip
Rated power:	660 kW
Voltage:	690 VAC
Frequency:	50 Hz
Class of protection:	IP54
Number of poles:	4
Rotational speed:	1515-1650 rpm
Rated current:	628 A
Power factor:	0.88
Resultant power factor:	0.98
Resultant current:	564 A

8.1.7 Small generator

-	
Type:	Asynchronous, cons. slip (1.1%)
Rated power:	200 kW
Voltage:	690 VAC
Frequency:	50 Hz
Class of protection:	IP54
Number of poles:	4
Rotational speed:	1500-1516 rpm
Rated current:	190 A
Power factor:	0.89
Resultant power factor:	0.99
Resultant current:	171 A

	51 7.5/.		Vestas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-0	660/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	16 of 27

8.1.8 Controller:

Electrical data:	
Voltage:	3x690 V, 50 Hz
Lockable circuit breaker:	630 A
Power supply for light:	1x10 A/230 V
Generator cut in:	By thyristors
Power factor correction:	250 kVAr
Top processor:	
Supervision/Control:	Yawing
	Hydraulic
	Surroundings (Wind, temperature)
	Rotation
	Generator
	Pitch system
Bottom processor:	
Supervision/Control:	Grid
-	Power factor correction
	Thyristors
	Remote monitoring
Operator panel:	
Information:	Operating data
	Production
	Operation log
	Alarm log
	0

Commands:

Run/Pause Manual yaw start/stop Maintenance routine

8.1.9 Remote monitoring:

Possibility of connection of serial communication e.g. Vestas Remote Panel.

8.1.10 Weight:

The listed masses is maximum values

Complete nacelle:	Approx.	20400 kg
Rotor V47, (incl. hub):	Approx.	7200 kg

	-fi-L-1.	Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	17 of 27

9. Installation

Terrain:

If the terrain within a 100 m radius of the turbine has a slope of more than 10° , certain considerations may be necessary.

Climatic conditions:

The turbine is designed for an ambient temperature range from -20° C up to $+40^{\circ}$ C, (10 min. average). The temperature range for the LT-version is -30° C up to $+40^{\circ}$ C (10 minutes average). Outside these temperatures the turbine will stop and certain considerations may be necessary.

The turbine can be placed in wind farms with a distance of min. 5 rotor diameters (235 m) between turbines. If the turbines are placed in only one row (perpendicular to the predominant wind direction) the distance between the turbines must as a min. be 4 rotor diameters (188 m).

For operation under different conditions contact Vestas.

The humidity can be 100%, (max. 10% of the time). Corrosion protection according to corrosion class 3 outside, and 1 to 2 inside, (DS/R 454).

Grid connection:

Intermittent or rapid power fluctuations of utility grid frequencies may cause serious damage to the wind turbine. Steady variations within + 1/-3 Hz are acceptable. The voltage operational range shall be within + 10/-6 of nominal.

Grid drop-outs should only take place once per week as an average over the lifetime of the turbine.

A ground connection of max. 10 Ω must be present. Furthermore, it is recommended that the turbine is connected to a TN-grid.

In case of small independent grids, it will be necessary to check the actual conditions.

The 5th and 7th. harmonics are sinusoidal voltage with frequencies at 250Hz and 350Hz respectively. Harmonics are caused by different equipment (e.g. welding machines), which via a transformer is connected to same power supply systems as the wind turbine. Harmonics in the power supply systems reduce the lifetime of the capacitor.

The impedance voltage of the transformer and the size of the power factor correction are very important for the acceptable level of harmonics.

- If a 800kVA transformer with 4.5% impedance voltage is used together with the 250 kVAr power factor correction, the 5th and 7th harmonics have to be below 3% and 2% respectively.
- If a 800kVA transformer with 6% impedance voltage is used together with the 250 kVAr power factor correction, the 5th and 7th harmonics have to be below 3% and 1% respectively.

It is recommended to use a 800kVA transformer with 4.5% impedance voltage for a V47-660kW wind turbine.

10. General reservations

Derating of nominal power may occur with a combination of e.g. high wind, low voltage or frequency and high temperature.

	- <i>1-L-</i> 1.	v	estas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47- ϵ	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	18 of 27

In general it is recommended that the grid voltage is as close to nominal as possible. A stationary frequency below nominal will influence the power curve.

In connection with a grid drop-out and very low temperatures, a certain time of heating-up must be expected before the turbine restarts after re-establishing of the grid.

If the wind turbine is placed in more than 1000 m above sea level, a higher temperature rise than usual might occur in generator, transformer and other electrical components. In this case a periodic reduction of rated power might occur, even if the ambient temperature is within the specified limits.

Furthermore, also at sites in more than 1000 m above sea level there will be an increased risc of icing up.

Due to continuous development and updating of VESTAS products, VESTAS reserves the right to change the specifications.

Vestas.		Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kV	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	19 of 27

11. Enclosure 1, power curve measurement

Power Curve measurement V47 660 kW wind turbine

11.1 Power curve measurement on the V47-660kW Wind turbine

1. The measurement is carried out by:

Tripod Wind Energy Aps Gladsaxe møllevej 21 2860 Søborg Phone 39666622 Fax 39666699

Tripod Wind Energy is authorized by the Danish Ministry of Energy to carry out power curve measurements and type testing in accordance with the Danish system for approval of wind turbines.

- 2. This resumé is made the 24. November 1997 by Vestas Wind Systems A/S
- 3. The measurements are reported in "TWE-report 970615-2", which is dated June 1997. The measurements are carried out in the period 8/4-1997 to 6/5 1997.
- 4. The Windturbine type is: VESTAS V47-660kW
- 5. The measurement was performed according to the "Recommandation for wind turbine power curve measurements [Risø-I-745(EN), November 1993]".
- 6. Results.

	-1	•	Vestas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	20 of 27

The measured power curve is corrected 1.225kg/m³. to the standard air density of

The annual energy output is calculated on the assumption that the availability is 100% and that the stop wind speed is 25m/s. The annual energy output is calculated using a Rayleigh distribution with an annual mean wind speed of 5 - 10 m/s.

TRIPOI	WIND EN	IERGY	:	14/6-1	997	14:59	(2	.fin)	
Object	of bin-	analysi	s :	Sortin	ıg: R	ain <	0.06	mm/10 mi	n,
			:	223-3 VESTAS	13 d V47	eg tur 660 k	b. < W - (15% Ø. Gammel	by
Data d	lirectori	es	:	Rotor \A.001	diam	eter: A.003	47 m		
Basıc Final	averagin	ig time ig time	:	60.00	secs	s			
X-axis Y-axis	s (bins) s (binned	1)	:	Wind s Power1	peed Cor	V1 [m rected	/s] [kW	1	
x·	bin #	data m	ean ()	() rm	ns (Y)	min	(Y)	max(Y)	
4	.17	4	11.5	75	1.58	9	.41	13.31	
4	5.02	36 90	41.7	16 79	8.35	25	.42	42.61 57.86	
5	5.50 5.00	97 119	67.8 95.6	36 1 59 1	.2.85	43 65	.90 .51	121.74 165.56	
ŧ	5.51	133 142	131.4	15 1 11 1	8.04	95 119	.44	230.63	
	7.49	128	209.8	35 2	0.23	174	.14	268.28	
8	7.99 3.47	83 69	253.8 301.1	10 2 19 2	2.68	262	.43	318.20	
-	9.02	68 60	362.4	18 2 70 3	7.29	308	.11	423.27	
10	0.01	67	468.7	74 3	8.10	378	.42	548.99	
10).47).99	86	508.5 551.2	5 3 26 2	6.66	393 476	.63	614.14 602.81	
11	L.50	59	587.8	32 2 16 1	6 74	498	.62	649.74	
12	2.48	41	634.3	38 1	5.86	592	.10	657.99	
13	3.01 3.49	33 25	646.1 651.4	79 1 10 1	.2.15 .0.01	609 626	.59 .58	661.80 660.70	
13	3.99	24	658.4	10	4.63	645	.43	662.67	
14	1.91	13	661.3	11	1.85	656	.63	662.91	
19	5.39 5.96	11 7	661.3 660.8	L6 37	1.54	658 659	.73 .71	662.91 662.91	
10	5.42	8	661.2	22	1.27	659	.83	662.79	
17	7.45	4	661.4	17	1.16	660	.08	662.79	
17	7.91	1	662.4	12	0.00	662 	.42 	662.42	
Т	otal	1564							
TRIPOD WIND	ENERGY	;	14/6-	-1997 1	4:59	(3.	fin)		
Object of b									
ODIECT OT D	in-analy	sis :	Sorti	ing: Ra	ain <	0.06	mm/1	.0 min.	
object of b	in-analy	sis :	Sorti 223-	ing: Ra •313 de	ain < eg tu	0.06 rb. <	mm/1 15∛	.0 min,	
object of b	in-analy	sis :	Sorti 223 VESTA	ing: Ra 313 de AS V47	in < g tu 660	0.06 rb. < kW - 0	mm/1 15%). Ga	.0 min, mmelby	
Data direct	ories	sis : : : : :	Sorti 223 VESTA Roton \A.00	ing: Ra -313 de AS V47 : diame)1 - \A	in < 9 tu 660 2 ter: 4.003	0.06 rb. < kW - 0 47 m	mm/1 15%). Ga	.0 min, mmelby	
Data direct Basic avera	ories ging tim	sis : : : : :	Sorti 223- VESTA Rotoi (A.00 60.00	ing: Ra 313 de AS V47 diame)1 - \A) secs	in < 9 tu 660 eter: 4.003	0.06 rb. < kW - 0 47 m	mm/1 15%). Ga	.0 min, mmelby	
Data direct Basic avera Final avera	ories ging tim ging tim	sis : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00 60.00 600.0	ing: Ra -313 de AS V47 c diame 01 - \ <i>P</i>) secs)0 secs	ain < eg tu 660 eter: A.003	0.06 rb. < kW - 0 47 m	mm/1 15%). Ga	0 min, ammelby	
Data direct Basic avera Final avera X-axis (bin	ories ging tim ging tim s) ned)	sis : : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (A.00 60.00 600.0 Wind	ing: Ra -313 de AS V47 c diame 01 - \P) secs 00 secs speed	vin < eg tu 660 eter: 003 vi [0.06 rb. < kW - 0 47 m m/s]	mm/1 15%). Ga	0 min, ammelby	nt (n [_]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin	ories ging tim ging tim s) ned)	sis : : : : : : : : : :	Sorti 223- VESTA Roton (A.00 60.00 60.00 600.0 Wind Elect	ing: Ra 313 de AS V47 c diame D1 - \P) secs 00 secs speed cric pc	vin < 9 tu 660 eter: 0.003 vi [wer1	0.06 rb. < kW - 0 47 m m/s] (corr	mm/1 15%). Ga	0 min, ammelby coefficie	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin	ories ging tim ging tim s) ned) # data	sis : : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (A.00 60.00 600.0 Wind Elect	ing: Ra 313 de AS V47 c diame 01 - \P 0 secs 00 secs speed cric pc cms(Y)	win < y tu 660 eter: 0.003 V1 [wer1 mi	0.06 rb. < kW - 0 47 m m/s] (corr n(Y)	mm/1 15%). Ga	0 min, ammelby coefficie: c(Y)	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 4.17	ories ging tim ging tim s) ned) # data 4	sis : : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00 60.00 600.0 Wind Elect	ing: Ra -313 de AS V47 c diame D1 - \P 0 secs speed cric pc cms(Y) 0.021	vin < g tu 660 eter: 0 v1 [mi mi 0	0.06 rb. < kW - 0 47 m m/s] (corr n(Y) .123	mm/1 15%). Ga (.) c max	.0 min, ammelby coefficie c(Y) 177	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin X-bin 4.17 4.58 5.02	ories ging tim ging tim s) ned) # data 4 36 90	sis : : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (\A.00 60.00 600.0 600.0 Wind Elect) 1 3 5 8	<pre>ing: Ra 313 de AS V47 c diame D1 - \F) secs 00 secs speed cric pc cms(Y) 0.021 0.057 0.046</pre>	<pre>in < cg tu cg tu 660 cter:: 3 V1 [mi mi 0 0 0</pre>	0.06 rb. < kW - 0 47 m m/s] (corr n(Y) .123 .142 208	mm/1 15% (). Ga (). Ga (). (). (). (). (). (). (). (). (). ().	0 min, mmelby coefficie x(Y) 177 379 411	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin X-bin 	ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (A.00 60.00 600.0 600.0 Wind Elect) 1 3 5 8 2	ing: Ra 313 de AS V47 diame 01 - \P secs 00 secs speed cric pc crms(Y) 0.021 0.021 0.046 0.061	<pre>in < cg tu cg tu 660 eter:</pre>	0.06 rb. < kW - 0 47 m (corr n(Y) .123 .142 .208 .271	mm/1 15%). Ga max 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: c(Y) 177 379 411 695	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	ories ging tim ging tim s) med) # data 4 366 90 97 119	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00 60.00 600.0 600.0 600.0 600.0 8 2 3 5 8 2 2 7 2	ing: Ra -313 de AS V47 - diame D1 - \P) secs 00 secs speed cric pc cms(Y) 0.021 0.057 0.046 0.061 0.051	<pre>in < cg tu 660 eter:</pre>	0.06 rb. < kW - 0 47 m (corr n(Y) .123 .142 .208 .271 .305	mm/1 15% 3. Ga 3. Ga 0. Ga 0. 0. 0. 0.	0 min, ummelby coefficie: c(Y) 177 379 411 695 709	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	ories ging tim ging tim s) ned) # data 4 36 90 97 119 133 142	sis : : : : : : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00 60.00 Wind Elect) 1 3 5 8 2 7 6 2	ing: Ra -313 de AS V47 - diame D1 - \F 0 secs speed cric pc 0.021 0.057 0.046 0.061 0.051 0.037	<pre>in < color="block"> in </pre> in in <pre>in </pre> in	0.06 rb. < kW - 0 47 m m/s] (corr n(Y) .123 .142 .208 .271 .305 .344	mm/1 15% 5. Ga max 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ummelby coefficie: c(Y) 	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	ories ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 122	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Rotor \A.00 60.00 600.0 Wind Elect 1 3 5 8 2 7 6 2 9	ing: Ra -313 de -313 de -313 de -313 de -316 de -31	<pre>min </pre> ceg tu 660 eter:: A.003 s V1 [min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.06 rb. < kw - 47 m (corr n(Y) 	mm/1 15% 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ammelby coefficie: (Y) 177 379 411 695 709 735 538 561	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.000 600.00 600.00 Wind Elect) 1 3 5 8 2 7 6 2 9 8 2 7 8 2 9 8 5	<pre>ing: Ra 313 de SS V47 c diame D1 - \/F 0 secs 00 secs 00</pre>	<pre>in < cg tu 660 cter:: 0.003 v1 [mi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0.06 rb. < kw - 0 47 m (corr .123 .142 .208 .271 .305 .344 .334 .334	mm/1 15% 3. Ga () c max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ammelby coefficie: (Y) 177 379 411 695 709 735 538 561 557	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 64	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00 60.00 600.0 600.0 Wind Elect) 1 3 5 8 2 7 6 2 9 8 8 4	ing: Ra 313 de S S V47 ; ; diamee S v47	<pre>in < cg tu 660 cter:: 1.003 v1 [wwwer1 mi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0.06 rb. < kw - 4 47 m (corr .123 .142 .208 .271 .305 .344 .334 .334 .334	mm/1 15% 5. Ga 5. Ga 0. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ammelby coefficie: c(Y) 177 411 695 739 411 695 538 5561 557 553 553 553	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 68 60	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.000 60.000 wind Elect) 1 3 5 8 2 7 6 2 9 8 8 6 4 5	ing: Ra313 de 313 de S V47 ; diamee c diamee speed 0 secs speed 0 ric pc cms (Y) 0.021 0.021 0.057 0.046 0.061 0.057 0.046 0.051 0.057 0.046 0.051 0.057 0.046 0.051 0.057 0.046 0.051 0.057 0.046 0.051 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.057 0.046 0.047 0.057 0.046 0.047 0.047 0.047 0.047 0.047 0.046 0.047 0.047 0.046 0.047 0.047 0.046 0.047 0.047 0.046 0.047 0.047 0.047 0.047 0.046 0.047 0.047 0.047 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.040 0.047 0.047 0.042 0.045 0.0	<pre>in < cg tu eg tu 660 cter::</pre>	0.06 rb. < 47 m (corr .123 .142 .208 .344 .335 .344 .334 .334 .336 .390 .380	mm/1 15% 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 411 695 538 561 557 553 515 528	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nn-analy ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (A.00 60.00 60.00 Wind Elect Wind Elect 9 8 8 2 7 6 2 9 8 6 4 5 9 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>ing: Radson for the second secon</pre>	<pre>in < cg tu 660 640 640 640 640 640 640 640 640 640</pre>	0.06 rb. < kW - Q 47 m (corr .123 .208 .271 .305 .344 .334 .334 .335 .341 .396 .380 .380 .380	mm/1 15% 5. Ga 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie (Y) 177 779 411 695 709 735 538 561 557 553 515 528 515 528 515	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nn-analy ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 68 60 67 70 86	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton \A.00.60.00 600.0 Wind Elect) 	<pre>ing: Radson for the second secon</pre>	<pre>in < color="block">din < color="block">color="block"</pre>	0.06 rb. < kW - Q 47 m (corr .123 .142 .208 .271 .305 .344 .334 .334 .334 .334 .334 .336 .380 .380 .380 .380 .332	<pre>mm/1 15% 3. Ga 5.) c max 6.) c max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	0 min, ammelby coefficie c(Y) 177 379 411 695 538 561 557 553 515 528 515 528 515	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 68 60 60 67 70 85 95	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton (60.00 600.0 Wind Elect) 1 5 8 2 7 6 2 9 8 6 4 5 9 7 1 4	ing: Rad 313 dé 5 V47 c diame 11 - \F 5 V0 secs speed 00 secs speed c 00 secs speed 00 secs speed 00 secs 00 s	<pre>hin < deg tu 660 eter:: 610 v1 [wwer1 win 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0.06 rb. < 47 m 47 m (corn .123 .142 .208 .271 .305 .344 .375 .344 .375 .341 .396 .380 .380 .380 .380 .381 .326 .332 .319	mm/1 15% 5. Ga 0. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ammelby coefficie: c(Y) 177 379 411 695 709 735 538 561 557 553 515 528 515 528 515 480 454 401	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nn-analy ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : :	Sorti 223- VESTA Roton 60.00 600.0 Wind Elect) 1 3 5 8 2 7 6 2 9 8 6 6 2 9 8 6 6 7 1 4 4 7 1 4 4 7	ing: Rad 313 dé 5 V47 c diame 11 - \F 5 V47 c diame 5 C diam	<pre>in < deg tu 660 eter:: 6.003 v1 [wwer1 v1 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0.06 rb. < 47 m (corn (corn (r) -123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .335 .341 .326 .332 .319 .322 .319	<pre>mm/1 15% 5. Ga 6.) c max 7.) c max 7.) c 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</pre>	0 min, ammelby coefficie c(Y) 177 379 411 695 709 735 538 561 557 553 515 528 515 515 480 401 361 202	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 366 90 97 119 133 142 128 83 3 142 128 83 3 69 68 60 67 70 86 59 48 41 33	sis : : : : : : : : : : : : : : : : : :	Sort: 223- VESTD: \A.00 60.00 60.00 Wind Elect) 1 3 5 8 2 7 6 2 9 8 6 4 5 9 7 1 4 4 7 7 7	<pre>ing: Red 313 de 313 de 400 secs 0 secs</pre>	<pre>in < color co</pre>	0.06 rb. < kw - Q 47 m (corn n(Y) 123 .208 .271 .305 .341 .396 .390 .361 .326 .332 .319 .302 .290	mm/1 15% 5. Ga max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, ammelby coefficie: c(Y) 177 379 411 695 709 735 538 561 557 553 515 528 515 515 480 454 401 361 329 298	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 31 142 128 83 31 42 59 68 60 67 70 86 59 948 41 33 32	sis : : : : : : : : : : : : : :	Sort: 223- VESU2 \A.00 60.00 60.00 Wind Elet 1 5 8 2 7 6 2 9 8 6 2 9 8 6 4 5 9 7 1 4 4 7 7 0	ing: Refailed and a second a s	<pre>in < color co</pre>	0.06 rb. << kw - 4 47 m (corr .123 .142 208 .314 .305 .344 .334 .334 .334 .336 .330 .380 .326 .332 .319 .302 .255 .237	mm/1 15% 5. Ga max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 379 411 695 538 561 557 553 515 528 515 528 515 480 454 401 361 329 298 263	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 68 60 67 70 86 59 68 60 67 70 86 59 48 41 33 25 24 24	sis : : : : : : : : : : : : : :	Sort: 223-7 Rotor Rotor (\A.00 600.0 Windt Elect) 3 5 8 2 7 6 2 9 8 6 2 9 8 6 4 5 9 7 1 4 4 7 7 0 6	ing: Refailed and a second a s	<pre>in < color co</pre>	0.06 rb. << kw - 4 47 m (corr .123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .396 .390 .361 .326 .326 .326 .319 .302 .255 .225 .225	mm/1 15% 3. Ga (.) c max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 379 411 695 508 551 553 555 553 515 528 551 528 551 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 521 480 454 401 361 329 298 263 235 515 515 515 515 515 515 515 5	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : : : : : :	Sorti- 223-7 Rotor Rotor 600.00 Windt Elect) 3 5 8 2 7 6 2 9 8 6 4 5 9 7 6 2 9 8 6 4 5 9 7 1 4 4 4 7 7 0 6 4 4 4 4 4 4 4 4 4 4 4 4 4	ing: Rad 313 de 313 de 313 de 313 de 313 de 314 de 314 de 315 de	<pre>in < color co</pre>	0.06 rb. <4 kw - 4 47 m (corr .123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .336 .390 .361 .326 .326 .326 .322 .215 .225 .225 .225 .225 .225 .225 .2	mm/1 15% 3. Ga (.) c max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 379 411 695 538 561 553 515 528 553 515 528 515 528 515 528 515 528 515 228 263 235 214 193	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : : : : : :	Sorti 223- 223- Rotor \A.000 600.0 Wind Elect) 1 5 5 8 2 7 6 2 9 8 6 4 5 9 7 1 4 4 4 7 7 0 6 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1	ing: Rad 313 de 313 de 313 de 313 de 313 de 314 de 314 de 315 de	<pre>in < din < di</pre>	0.06 rb. < kw - 4 47 m (corr .123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .336 .361 .326 .326 .326 .322 .290 .225 .194 .163	mm/1 15% 3. Ga max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 379 411 695 508 561 553 515 528 521 528 515 528 528 528 528 528 528 528 52	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 	sis : : : : : : : : : : : : : : : : : :	Sorti 223- 223- Rotor \A.00 600.0 Wind Elect) 1 3 5 8 2 7 6 2 9 8 6 4 5 9 7 6 2 9 8 6 4 4 7 7 0 6 4 4 4 4 7 7 0 6 4 4 4 4 4 4 7 7 0 6 4 4 4 4 4 4 4 4 4 4 5 5 8 2 7 6 6 6 6 6 6 6 6 6 6 6 6 6	ing: Rad 313 de 313 de 313 de 313 de 313 de 314 de 314 de 315 ve 314 de 315 ve 315 ve 314 de 315 ve 315 ve	<pre>in < dig tu in < dig tu ig tu i</pre>	0.06 rb. <m/s](corr(corr123142208271.305.344.375.341.396.361.326.322.290.255.215.163.162	mm/1 15% 2. Ga max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 411 695 538 557 553 555 555 555 555 555 555	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 36 90 97 119 133 142 128 83 69 68 60 67 70 70 86 60 67 70 86 59 48 41 33 25 24 43 25 24 43 25 24 32 13 11 7 8 6 6 7 7 7 7 8 6 6 7 7 7 7 8 8 7 7 7 8 8 8 8	sis : : : : : : : : : : : : : : : : : :	Sorti: 2233 VESTR Rotol (A.000 600 Wind Elect) 1 5 8 2 7 6 2 9 8 6 2 9 8 6 2 9 7 1 4 4 7 7 0 6 4 8 1 3 1 9 7 1 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>ing: Res V47</pre>	<pre>in <i color="" for="" secon<="" second="" td="" the=""><td>0.06 rb. < kw - 47 m (corr .123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .336 .336 .336 .336 .336 .336 .336</td><td>mm/1 15% 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.</td><td>0 min, mmelby coefficie: (Y) 177 779 411 695 557 553 515 557 553 515 515 515 515 515 515 515</td><td>nt Cp [-]</td></i></pre>	0.06 rb. < kw - 47 m (corr .123 .142 .208 .271 .305 .344 .375 .344 .375 .344 .336 .336 .336 .336 .336 .336 .336	mm/1 15% 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie: (Y) 177 779 411 695 557 553 515 557 553 515 515 515 515 515 515 515	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 366 90 97 119 133 142 128 83 69 68 68 60 67 70 86 68 60 67 70 86 63 59 48 41 33 25 24 24 32 13 11 7 8 6 4	sis : : : : : : : : : : : : : : : : : :	Sorti: VESTR VESTR Rotol (A.000 600.0 Wind Elect) 1 5 8 2 7 6 2 9 8 6 4 5 9 7 1 4 4 7 7 0 6 4 8 1 3 1 9 7 1 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7	ing: Red 313 de 5 V47 c diame c di di di di di di di di di di di di di d	<pre>in < din < dig tu 660 660 7</pre>	0.06 rb. < 47 m/s] (corr n(Y) .123 .142 .208 .271 .305 .314 .335 .344 .335 .344 .336 .341 .336 .341 .336 .331 .326 .332 .319 .225 .237 .124 .163 .149 .124 .112	mm/1 15% 5. Ga 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie (Y) 177 411 695 709 715 538 561 557 553 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 528 515 214 157 157 157 157 157 157 157 157	nt Cp [-]
Data direct Basic avera Final avera X-axis (bin Y-axis (bin X-bin 	nr-analy ories ging tim ging tim s) ned) # data 4 366 90 97 119 133 142 128 83 69 68 60 67 70 86 68 60 67 70 86 63 59 48 41 33 25 24 48 41 33 25 24 48 41 7 7 8 6 6 4 1 7 7 8 6 6 4 1 7 7 8 6 6 4 1 7 7 8 8 7 7 70 8 8 8 7 70 8 8 8 7 70 8 8 8 7 70 8 8 8 7 70 8 70 8 70 70 70 8 8 8 70 70 8 70 70 70 8 8 8 70 70 70 8 8 8 70 70 70 8 8 70 70 70 8 70 70 70 8 70 70 70 8 8 8 70 70 70 8 8 8 70 70 70 8 70 70 70 8 8 8 70 70 70 8 8 8 8	sis : : : : : : : : : : : : : : : : : :	Sorti: VESTI VESTI RotoO 60.00.(Wind C) 1 3 5 8 2 7 6 2 9 8 6 4 4 5 9 7 6 2 9 8 6 4 4 7 7 0 6 4 4 7 7 0 6 4 8 1 3 1 9 7 8 7 8 6 4 4 4 7 7 7 8 8 7 7 8 8 6 4 4 7 7 7 8 8 7 7 8 8 7 7 8 8 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	<pre>ing: Red 313 de solution</pre>	<pre>in <ing tu<br="">660</ing></pre>	0.06 rb. < 47 m/s] (corr n(Y) .123 .142 .208 .271 .305 .314 .336 .331 .334 .336 .334 .336 .331 .336 .331 .336 .332 .319 .325 .235 .237 .124 .163 .149 .124 .112 .108	mm/1 15% 5. Ga max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 min, mmelby coefficie (Y) 177 779 411 695 577 553 515 557 553 515 528 515 515 515 515 515 515 515 51	nt Cp [-]

Total

	-1-1-	Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	60/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	21 of 27

Annual mean Wind speed	Annual Energy Output	Unce	rtainties
[m/s]	[MWh]	[MWh]	[%]
5	862	50,6	5,9
6	1386	57,2	4,1
7	1918	60,0	3,1
8	2410	60,1	2,5
9	2838	58,5	2,1
10	3187	55,9	1,8

The Annual Energy Output in the 4 Danish roughness classes is calculated, using a Weibull distribution, by Vestas Wind Systems A/S. The annual energy output is calculated on the assumption that the availability is 100%, 45 m hub height and 25m/s stop wind speed. The uncertainties are estimated from the above mentioned uncertanties, which is calculated by Tripod Wind Energy Aps.

Roughness class	Annual Energy	Uncertainties			
	Output				
[-]	[MWh]	[MWh]	[%]		
0	2584	59,4	2,3		
1	1791	59,3	3,3		
2	1480	57,7	3,9		
3	1039	52,8	5,1		

		Ve	stas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	22 of 27

11.2 Power curve measurement on the V47-660/200kW Wind turbine

1. The measurement is carried out by:

Windtest Kaiser-Wilhelm-Koog GmbH Sommerdeich 14b D-25709 Kaiser-Wilhelm-Koog Phone +49 48569010 Fax +49 485690149

Windtest Kaiser-Wilhelm-Koog GmbH is authorised by the German accreditation council DAR to carry out power curve measurements.

- 2. This resumé is made the 19. January 1998 by Vestas Wind Systems A/S
- 3. The measurements are reported in "WT 761/97". The measurements are carried out in the period 24/10-1997 to 25/12 1997.
- 4. The Windturbine type is: VESTAS V47-660/200kW
- 5. The measurement was performed according to IEC/TC88 "Wind Turbine Generator Systems, Part 12:Power Performance Techniques" .
- 6. Results.

The measured power curve is corrected to the standard air density of 1.225kg/m³.

		Ves	stas 660 kW	Variable Slip	wind Turbine, V47-660 kW	and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	23 of 27

	MEASURED POWER CURVE: V47							
reference	air density: 1.225	kg/m³		category A	category B	combined		
cut-out w	indspeed: 25 m/s					uncertainty		
bin	hub height	power	no. of	standard	standard	standard		
no.	wind speed	output	data sets	uncertainty	uncertainty	uncertainty		
	[m/s]	[kW]	(10 min. avg.)	[kW]	[kW]	[kW]		
1	1.90	1.34	123	0.03	4.22	4.2		
2	3.03	1.18	95	0.12	4.21	4.2		
3	3.51	5.28	104	0.43	4.39	4.4		
4	4.01	19.13	156	0.50	5.78	5.8		
5	4.51	33.92	215	0.53	6.02	6.0		
6	5.02	52.56	218	0.59	6.84	6.9		
7	5.50	72.07	222	0.58	7.63	7.7		
8	6.00	93.28	227	0.66	8.09	8.1		
9	6.50	118.30	239	1.01	9.60	9.6		
10	7.01	156,90	259	1.14	14,34	14,4		
11	7.51	196,50	312	1.05	15.76	15.8		
12	7.99	239 10	329	1 27	18.28	18.3		
13	8.51	284.70	264	1.40	19.29	19.3		
14	8 99	327 50	212	1.81	20.29	20.4		
15	9.49	380.30	156	2.16	24.87	25.0		
16	10.00	425.40	125	2.48	22.29	22.4		
17	10.49	468 20	123	2.19	22.57	22.7		
18	11.02	514.00	97	2.40	23.58	23.7		
19	11.46	549 70	95	212	23.02	23.1		
20	11.95	587.60	41	4 43	22.85	23.3		
21	12 44	614 70	26	2.81	17 34	17.6		
22	12.92	630.90	25	312	11 70	12.1		
23	13.46	647 30	17	1 21	11 12	11.2		
24	14.02	654 20	27	0.96	671	68		
25	14.48	658.40	20	0.50	617	62		
26	14.97	659.70	16	0.21	5.38	54		
27	15.43	660.30	12	0.38	5.15	52		
28	16.00	661 30	8	0.15	5.17	52		
29	16.48	661.4	14	0.14	5.14	51		
30	17.01	661.4	17	0.12	513	51		
31	17.52	661.3	11	0.12	5.13	51		
32	18.11	661.4	10	0.17	5.14	5.1		
32	19.37	661.1	5	0.20	5.14	5.1		
	10.37	001.1	3	0.20	1	<u> </u>		

The annual energy output is calculated on the assumption that the availibility is 100% and that the stop wind speed is 25m/s. The annual energy output is calculated using a Rayleigh distribution with an annual mean wind speed of 4- 11 m/s.

	ESTIMATED ANI	NUAL ENERGY P	PRODUKTION (AEP)	
extrapolation of the po	wer curve between the highest		type of WTGS:	V47
measured wind speed	and the cut-out wind speed		cut-out wind speed	1: 25 m/s
considering the same	as the measured at highest		reference air densi	ity: 1.225 kg/m³
measured wind speed	i -			
hub height	AEP-measured	uncertain	ly of measured	AEP-extrapolated
annual average	(measured power curve)	power	in terms of	(extrapolated power curve)
wind speed		standaro	d deviation of	
(Rayleigh)			AEP	
[m/s]	[MWh]	[MWh]	[%]	[MWh]
4.0	433.8	58.8	13.5	433.8
5.0	845.7	78.7	9.3	845.8
6.0	1333.3	94.9	7.1	1336.9
7.0	1818.9	104.7	5.8	1844.6
8.0	2233.8	108.4	4.9	2323.2
9.0	2538.9 *	107.7	4.2	2745.0
10.0	2727.3 *	104.0	3.8	3093.5
11.0	2813.2 *	98.7	3.5	3360.9

values marked with *: power curve incomplete acc. IEC criteria for data base

The Annual Energy Output in the 4 Danish roughness classes is calculated, using a Weibull distribution, by Vestas Wind Systems A/S. The annual energy output is calculated on the assumption that the availability is 100%, 45 m hub height and 25m/s stop wind speed. The uncertainties are estimated from the above mentioned uncertainties, which is calculated by Windtest.

Roughness class	Annual Energy	Uncertainties	
	Output		
[-]	[MWh]	[MWh]	[%]
0	2487	107,8	4,3
1	1721	102,7	5,9
2	1426	96,7	6,7
3	1012	84,2	8,3

Vestas.		Ves	tas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	660/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	24 of 27

11.3 Enclosure 2, noise measurement

11.4 Noise resume of VESTAS V47-660 kW Wind Turbine

1. The measurement has been done by:

Acoustica as Fælledvej 3 8800 Viborg

under the accreditation, registration no. 134, from DANAK.

- 2. This resume has been worked out on September 3, 1996 by Vestas Wind Systems A/S.
- 3. The noise measurements have been reported in Acoustica report no. P4.010.97 dated August 6, 1997. The noise measurements has been carried out July 28, 1997.
- 4. The measurements were carried out to determine the noise emission from a VESTAS V47-660 kW.
- 5. The noise emission has been determined according to statutorial order no. 304 of may, 14, 1991, and relevant parts of Guideline no. 6/1984, "Noise from Industrial Plants", from the Danish Ministry of the Environment.
- 6. Results of Measurements:
- ба.

The apparent A-

V <i>25171</i> 7.		V	/estas 660 kW	Variable Slip	Wind Turbine, V47-660 kV	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	25 of 27

weighted sound power level can be calculated from the equivalent continuous A-weighted sound pressure level, using the following expression:

$$L_{WA} = L_{Aeq} + 10 \cdot \log(4 \cdot \pi \cdot (d^2 + h^2)) - 6 dB$$

Where, d = distance from the base of the wind turbine to the measurement position (d=75m). h = hub height (h = 40,5m + 0,5m).

6b. The measurement show the following results at a wind speed of 8 m/s. The measurements is given respectively, as the A-weighted sound pressure level $L_{Aeq,ref}$ and the A-weighted sound power level $L_{WA,ref}$.

Frequency	L _{Aeq,ref} [dB(A)]	L _{WA,ref} [dB(A)]
1/1 octave 63 Hz	34,6	78,2
1/1 octave 125 Hz	42,5	86,1
1/1 octave 250 Hz	46,2	89,8
1/1 octave 500 Hz	51,6	95,2
1/1 octave 1 kHz	53,4	97,0
1/1 octave 2 kHz	49,2	92,9
1/1 octave 4 kHz	44,2	87,9
1/1 octave 8 kHz	25,6	69,2
A-weighted, total	57,2	100,8

According to statoturial order no. 304 of May 14, 1991, from the Danish Ministry of the Environment, the degree of accuracy on the results is $\pm 2 \text{ dB}$.

6c. An analysis of the noise in a distance of 75 meter show, that the noise from the turbine contains no clearly audible tones or impulses. The analysis has been performed according to guideline no. 6/1984, "Noise from Industrial Plants", from the Danish Ministry of the Environment.

Vestes.			Vestas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	26 of 27

11.5 Noise resume of VESTAS V47-660/200 kW Wind Turbine

1. The measurement has been done by:

Acoustica as Fælledvej 3 8800 Viborg

under the accreditation, registration no. 134, from DANAK.

- 2. This resume has been worked out on September 3, 1996 by Vestas Wind Systems A/S.
- 3. The noise measurements have been reported in Acoustica report no. P4.011.97 dated August 6, 1997. The noise measurements has been carried out July 30, 1997.
- 4. The measurements were carried out to determine the noise emission from a VESTAS V47-660/200 kW.
- 5. The noise emission has been determined according to statutorial order no. 304 of may, 14, 1991, and relevant parts of Guideline no. 6/1984, "Noise from Industrial Plants", from the Danish Ministry of the Environment.
- 6. Results of Measurements:

The apparent A-weighted sound power level can be calculated from the equivalent continuous A-weighted sound pressure level, using the following expression:

 $L_{WA} = L_{Aeq} + 10 \cdot \log(4 \cdot \pi \cdot (d^2 + h^2)) - 6 dB$

Where, d = distance from base of wind turbine to measurement position (d= 75m). h = hub height (h = 45,0m + 1,0m).

Vestela.		V	vestas 660 kW	Variable Slip	Wind Turbine, V47-660 kW	V and V47-6	560/200 kW
Date:	02-05-00	Class:	1	Item no.:	943111.R4	Page:	27 of 27

6b. The measurement show the following results at a wind speed of 8 m/s. The measurements is given respectively, as the A-weighted sound pressure level $L_{Aeq,ref}$ and the A-weighted sound power level $L_{WA,ref}$.

Frequency	L _{Aeq,ref} [dB(A)]	L _{WA,ref} [dB(A)]
1/1 octave 63 Hz	32,6	76,5
1/1 octave 125 Hz	40,2	84,1
1/1 octave 250 Hz	46,7	90,6
1/1 octave 500 Hz	52,1	95,9
1/1 octave 1 kHz	50,8	94,7
1/1 octave 2 kHz	45,8	89,7
1/1 octave 4 kHz	39,8	83,7
1/1 octave 8 kHz	24,8	68,7
A-weighted, total	55,9	99,8

According to statoturial order no. 304 of May 14, 1991, from the Danish Ministry of the Environment, the degree of accuracy on the results is ± 2 dB.

6c. An analysis of the noise in a distance of 75 meter show, that the noise from the turbine contains no clearly audible tones or impulses. The analysis has been performed according to guideline no. 6/1984, "Noise from Industrial Plants", from the Danish Ministry of the Environment.

ELECTRICAL DATA

VESTAS V47 - 660 kW VESTAS V47 - 660/200 kW

Controller: VMP-660kW-690V-50Hz

ITEM No.: 943117.R1

(13c)

Vestels.		Ele	ectrical Data Vestas V	V47-660 kW, VMP-6	90V-50Hz	
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	2 of 18

V47 Electrical Data

Contents	Page
1. V47 Wind Turbine	
2. The VMP-Controller	
3. Tubular Tower	
4. Lattice Tower	
5. System Earthing	
6. Turbine Earthing System/Lightning Protection	5
7. Rated Electrical Data and Power Factor Correction	6
8. Nameplate on the Ground Controller	6
9. Grid connection	7
10. Monitoring of the Grid	7
11. kWh-meter Arrangement	
12. Drawings	

Vestele.		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	3 of 18

1. V47 Wind Turbine

Vestas V47-660 kW with VMP-660kW-690V-50Hz controller.

The Vestas V47 wind turbines is available in two versions, V47-660/200 kW and V47-660 kW. The 200 kW generator operates at low wind speeds. This 200 kW generator ensures that the noise from the blades is kept at an absolute minimum. The rotor rotates slowly and an increased power production is achieved.

Vestas V47-660 kW wind turbine is a pitch regulated wind turbine, in consequence of which the blades are always pitched in the optimum angle during production as well as stop situations. The generator is a special asynchronous generator with integrated electronics, which is able to operate with a variable slip between 1 % and 10 %. Among the advantages of a pitch regulated wind turbine with variable slip the following should be mentioned:

- Optimum production under all wind conditions.
- Output is limited to 660 kW.
- Power output is smoothed.
- No motor start.
- Cut in of generator at synchronous speed.
- Turbine can be stopped without using the mechanical brake.
- Minimising of fluctuations in the mechanical transmission system.

2. The VMP-Controller

The wind turbine operates fully automatically by means of the VMP-controller (Vestas Multi Processor controller), which serves the following functions:

- Before connection to the grid, the speed of rotation is synchronised to the grid frequency in order to limit the cut-in current.
- Thyristor cut-in of the generator to limit the cut-in current.
- Cut-in current is lower than nominal current.
- Automatic yawing of the nacelle in accordance with the wind direction.
- Cut-in and cut-out of the power factor correction. Power factor correction covering no-load consumption of the reactive generator power is standard.
- Monitoring of the utility grid in accordance with DEFU report KR111 (Report from Danish Association of Electricity Supply Companies, 1998-04-08).
- Monitoring of the operation.
- Stop of the turbine in case of faults.
- As an option a capacitor assembly for 100 % power factor correction can be bought. The assembly contains impedance coils which protect the capacitors from the overcurrents caused by the 7th and 11th harmonics on the grid (voltage distortion).

The VMP-controller consists of a top controller and a ground controller. The top controller is located in the nacelle. The location of the ground controller depends on the choice of tubular tower or lattice tower. The ground controller is outlined on drawing 924785.
Vestas.		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	4 of 18

3. Tubular Tower

The ground controller is located at the bottom of the tower, see drawing no. 948606. The grid cables are led through 2 pieces of 160 mm tubes in the foundation and into the grid connection section of the ground controller.

4. Lattice Tower

If the turbine is installed on lattice tower, the ground controller is located in a wooden shed between the corner legs of the lattice tower, see drawing 948600. Vestas can supply the wooden shed. The wooden shed must be secured to a concrete foundation, and the grid cables are led through 2 pieces of 160 mm tubes into the grid connection section.

5. System Earthing

The transformer must have the lowvoltage gridside connected in star and this starpoint must be earthed, and connected to the earthingsystem of the turbine.

It is recommended to make the grid connection as a TN-system, see IEC 364 section 312.2.1. and 413.1.3. In consequence there of, the earthing system of the turbine must be connected to the earthing system of the transformer. The connection can be made either with a separate conductor (e.g. bare copper conductor) or through the neutral conductor in the grid cable, see drawing no. 948636. If the neutral conductor is used, it must be marked with green/yellow tape at both ends and defined as a PE-conductor, according to IEC 364 section 514.3.3.

Vestas.		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	5 of 18

6. Turbine Earthing System/Lightning Protection

The system should be made at the same time as the foundation work.

The earthing system must be accommodated to local soil conditions. The resistance to neutral earth should normally be no higher than 10 Ω . (In the Netherlands the resistance to neutral earth must be below 2.5 Ω , when the earthing system and concrete reinforcement are connected, see drawing 948678).

The earthing system shall be made as a closed ring conductor with earthing rods, see drawing 946056 or 922543. This gives the following advantages:

1. **Personnel safety.**

The ring conductor limits step and contact voltage for persons, staying near the tower foundation in case of a lightning stroke.

2. **Operational safety.**

The earthing rods ensure a steady and low resistance to neutral earth for the whole earthing system.

The earthing system is made as follows:

- 1. Ring conductor in 50 mm² Cu is established at a distance of 1 m from the foundation and approx. 1 m below ground level.
- 2. The ring conductor is supplemented with 2 copper coated earthing rods each of 6 m (\emptyset 14). The earthing rods are rammed down on each side of the tower/lattice tower (180° between the earthing rods).
- 3. The ring conductor is connected to two tower legs or two opposite points on a tubular tower. The ground controller is connected to one of these points, see drawing no. 946056.

If the resistance to neutral earth is not sufficiently low, the earthing system can be improved.

- 1. The two earth rods can be extended to 10 m.
- 2. Two extra earth rods of each of a length of 10 m can be added $(90^{\circ}$ between the 4 earth rods).

Vestas.		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	6 of 18

7. Rated Electrical Data and Power Factor Correction

V47-660 kW have one generator at 660 kW.

V47-660/200 kW has two seperate generators one of 660 kW and one of 200 kW.

Power	:	660 kW	200 kW
Generator type	:	Asynchronous with	Asynchronous
		VRCC	
Building size	:	400	280
Degree of protection	:	IP54	IP54
Voltage	:	690 Vac	690 Vac
Frequency	:	50 Hz	50 Hz
Number of poles	:	4	4
Slip regulation interval	:	1-10 %	1.1 %
Generator power factor $(\cos \phi)$:	:	0.88	0.89
Generator current	:	628 A	190 A
Power factor correction	:	250 kVAr	75 kVAr
Resulting power factor (grid side)	:	0.98	0.99
Resulting current (grid side)	:	560 A	169 A

8. Nameplate on the Ground Controller

Vestas Wind Systems A Smed Sørensens Vej 5	S /S DK-6950 Ringkøbing	CE
TIf. +45 96752575 F	ax +45 96752436	2000
Wind Turbine Type:	V47-660/200 kW	
Controller type:	VMP-660kW-690V-50H	lz
Voltage:	3x690 V +10∕-6%	
Frequency:	50 Hz +1/-3 Hz	
Current:	560 A	
Max. short curcuit current:	I _k = 15 kA	
Main wiring diag:	946065	

Vestas.		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date:	2. maj 2000	Class:	Item no.:	943117.R1	Page:	7 of 18

9. Grid connection

The ground controller consists of 5 sections, see drawing 924785. In the bus bar section there is one circuit breaker for the generator (Q8) and one circuit breaker (F30) for the control circuit and light located. The control circuits can be disconnected with one circuit breaker (Q16).

Circuit breakers Q8 and Q16 are lockable. When Q8 and Q16 are disconnected there will still be power for the light installation.

Beneath the bus bar section the grid connection section is located, please see drawing 922551. The grid cables are conducted through 3 pieces of 110mm tubes in the foundation to the grid connection section in the ground controller. There are four terminals for respectively L1, L2, L3 and PE. The grid cables must be mounted with cable lugs. Two pieces of M12x50 bolts in each terminal are used for mounting the cable lugs. This work has to be carried out by an authorised electrician.

Circuit breakers	Generator / Q8 ABB S6N 630	Controller / F30 ABB MS325+ PROLIM
Breaking capacity, Icu, Ics	20 kA/15 kA	50 kA
Thermo release, Ith	630 A	6,3 A
Magnetic release, Im	3.8 kA	108 kA

Do not connect wind turbine when the short circuit current is above 15kA.

9.1 Harmonics frequencies

The 5th and 7th. harmonics are sinusoidal voltage with frequencies at 250Hz and 350Hz respectively. Harmonics are caused by different equipment (e.g. welding machines), which via a transformer is connected to same power supply systems as the wind turbine. Harmonics in the power supply systems reduce the lifetime of the capacitor.

The impedance voltage of the transformer and the size of the power factor correction are very important for the acceptable level of harmonics.

- If a 800kVA transformer with 4.5% impedance voltage is used together with the 250 kVAr power factor correction, the 5th and 7th harmonics have to be below 3% and 2% respectively.
- If a 800kVA transformer with 6% impedance voltage is used together with the 250 kVAr power factor correction, the 5th and 7th harmonics have to be below 3% and 1% respectively.

It is recommended to use a 800kVA transformer with 4.5% impedance voltage for a V47-660kW wind turbine.

10. Monitoring of the Grid

The generator and the power factor correction will be disconnected if the voltage or the frequency exceeds the limits which are determined in the DEFU report KR111.

Vestas		Electrical Data Vestas V47-660 kW, VMP-690V-50Hz				
Date: 2. maj 2	2000 Class:	Item no.:	943117.R1	Page:	8 of 18	

Nominal phase voltage: U_{P,nom} = 400 V. Grid voltage: U_N

The generator and the power factor correction will be disconnected if:		
	UP	\mathbf{U}_{N}
The voltage is 10% above the nominal voltage for 60 s.	440 V	762 V
The voltage is 6% below the nominal voltage for 60 s.	376 V	651 V
The frequency is above 51 Hz for 0.2 s.		
The frequency is below 47 Hz for 0.2 s.		
The power factor correction will be disconnected if:		
The voltage is 11% above the nominal voltage for 0.08 s.	444 V	769 V
The generator will be disconnected if:		
The voltage is 13.5% above the nominal voltage for 0.2 s.	454 V	786 V

If a fault on the grid interrupts the voltage supply to the VMP-controller, the emergency stop circuit will be opened immediately and generator and power factor correction will be disconnected at the same time.

11. kWh-meter Arrangement

Vestas recommends that the kWh-meter arrangement is located in the transformer housing. The kWh-meter(s) should be located behind a window so that they can be read from outside. The kWh-meter(s) shall be connected to measuring transformers. Following measuring transformers can be used:

•	Current transformer	: class 0.2	, 600/5 A or 600/1 A.
---	---------------------	-------------	-----------------------

• Voltage transformers : class 0.2, 400/230 V (line-neutral).

12. Drawings

No.		CONTENT	PAGE
946065	R1	Main wiring diagram VMP-660kW-690V-50Hz	9
948606	R3	Placement of controller in tubular tower. VMP-GND-500/600kW	10
948600	R3	Placement of wooden shed. VMP-Ground-500/600kW	11
948636	R3	System earthing. TNS	12
946141	R0	System earthing. (2 generator operating) TN-S	13
946056	R4	Earthingsystem in modular tower	14
922543	R2	Earthingsystem in lattice tower. VMP	15
948678	R1	Earthingsystem in tubular tower. VMP.NL	16
924785	R1	Front view. VMP-GROUND-500/600kW	17
922551	R4	Grid connection section. VMP-Ground-500/600kW	18

. .

03. juli 1997

Draw. no. 948873r1

			VESTAS V47 - IEC - Tower top and foundation				
Date:	4. maj 2000	Class 1	Item no.:	943160.R0	Page:	1 of 5	

Vestas V47 Foundation loads.

This document gives the tower top and the foundation loads for a Vestas V47- 660 and 660/200 kW with different hub heights for general IEC/GL placement as given in the GL regulations (1993 Ed. With MArch 1994 supplement).

The climate and wind conditions is given in the General Specifications for the V47-660 and 660/200 kW turbines.

In the following table the coordinate system with horizontal X and Y axis in Figure 1 has been used and all loads in this document do not contain any load factors.

Figure 1: Koordinatsyst. Definition

(19a)

		VESTAS V47 - IEC - Tower top and foundation			
Date: 4. maj 2000	Class 1	Item no.:	943160.R0	Page:	2 of 5

The extreme load in the document has been calculated based on the loads from the load case EWP47b15 in the IEC load document (Item no. 943499).

Loads on tower top, tubular tower.

Following table list the tower top loads for the Vestas V47-660 and 660/200 kW turbines. It is assummed, that a standard Vestas tubular tower design is used and a Wöhler exponent m = 4 has been used for calculation of the equivalent fatigue loads.

VESTAS V47. Tower top loads. IEC placement				
	Extreme load Fatigue load at $n = 10^7$			
Peak to Peak				
F _x (kN)	180	0		
F _y (kN)	-7	54		
F _z (kN)	-286	42 ^{a)}		
M _x (kNm)	480	500		
My (kNm)	358	197		
Mz (kNm)	578	471		

^{a)} Only aerodynamic contribution.

 Table 1. General tower top loads.

Loads on top of concrete foundation, tubular tower.

Following tables list the foundation loads for the Vestas V47-660 and 660/200 kW turbines. It is assummed, that a standard Vestas tubular tower design is used and a Wöhler exponent m = 4 has been used for calculation of the equivalent fatigue loads.

VESTAS V47, hub height 40 m. IEC placement					
	Extreme loadFatigue load at $n = 10^7$				
		Peak to Peak	Mean		
F _x (kN)	223	-	0.6		
F _y (kN)	159	54	79		
F _z (kN)	-553	42 ^{a)}	-553		
M _x (kNm)	-2280	2590	3082		
My (kNm)	8240	197	236		
Mz (kNm)	578	471	25		

^{a)} Only aerodynamic contribution.

Table 2. General foundation loads - hub height 40 meter.

		V	ESTAS V47 - IEC - T	ower top and fo	undation	
Date:	4. maj 2000	Class 1	Item no.:	943160.R0	Page:	3 of 5

VESTAS V47, hub height 45 m. IEC placement				
	Extreme load Fatigue load at $n = 10^7$			
		Peak to Peak	Mean	
F _x (kN)	229	0	0.6	
Fy (kN)	183	54	79	
F _z (kN)	-592	42 ^{a)}	-592	
M _x (kNm)	-3120	2860	3476	
My (kNm)	9380	197	239	
Mz (kNm) 578 471		25		

^{a)} Only aerodynamic contribution. **Table 3.** General foundation loads - hub height 45 meter.

VESTAS V47, hub height 50 m. IEC placement				
	Extreme loadFatigue load at $n = 10^7$			
	Peak to Peak	Mean		
F _x (kN)	237	0	0.6	
F _y (kN)	212	54	79	
Fz (kN)	-640	42 ^{a)}	-639	
M _x (kNm)	-4020	3100	3823	
My (kNm)	10450	197	241	
Mz (kNm)	578	471	25	

^{a)} Only aerodynamic contribution. **Table 4.** General foundation loads - hub height 50 meter.

VESTAS V47, hub height 55 m. IEC placement				
	Extreme load Fatigue load at $n = 10^7$			
		Peak to Peak	Mean	
F _x (kN)	245	0	0.6	
F _y (kN)	246	54	79	
F _z (kN)	-758	42 ^{a)}	-758	
M _x (kNm)	-5280	3380	4233	
My (kNm)	11730	197	244	
Mz (kNm)	578	471	25	

^{a)} Only aerodynamic contribution. **Table 5.** General foundation loads - hub height 55 meter.

	: <u>15(7;15</u> @	V	ESTAS V47 - IEC - '	Tower top and for	undation	
Date:	4. maj 2000	Class 1	Item no.:	943160.R0	Page:	4 of 5

VESTAS V47, hub height 60 m. IEC placement				
	Extreme loadFatigue load at $n = 10^7$			
		Peak to Peak	Mean	
F _x (kN)	253	0	0.6	
F _y (kN)	274	54	79	
F _z (kN)	-834	42 ^{a)}	-834	
M _x (kNm)	-6430	3620	4580	
M _y (kNm)	12860	197	247	
Mz (kNm)	578	471	25	

^{a)} Only aerodynamic contribution.

Table 6. General foundation loads - hub height 60 meter. Only V47-660/200 kW

VESTAS V47, hub height 65 m. IEC placement				
	Extreme load	Extreme load Fatigue load at $n = 10^7$		
Peak to Peak			Mean	
F _x (kN)	260	0	0.6	
Fy (kN)	306	54	79	
Fz (kN)	-911	42 ^{a)}	-911	
M _x (kNm)	-7840	3890	4967	
My (kNm)	14160	197	250	
M _z (kNm) 578 471		25		

^{a)} Only aerodynamic contribution.

 Table 7. General foundation loads - hub height 65 meter. Only V47-660/200 kW

Note that these loads do not contain any load factor. In other words characteristic loads

Natural frequencies - Tower and foundation stiffness.

Frequiencies	1 p, Hz	3 p, Hz
V47-660	0.475	1.43
V47-660/200 large generator	0.43	1.3
V47-660/200 small generator	0.33	1.00

Table 8. Rotor frequencies-synchronuous.

	V	VESTAS V47 - IEC - Tower top and foundation			
Date: 4. maj 2000	Class 1	Item no.:	943160.R0	Page:	5 of 5

Frequencies of the combined turbine, tower and foundation must be within + /- 5 % of the values listed below.

Hub height	Eigenfrequens fo
m	Hz
40	0.70
45	0.61
50	0.58
55	0.56
60 ^{a)}	0.54
65 ^{a)}	0.50

^{a)} Only V47-660/200 kW **Table 8.** Tower frequencies.

Conclusion.

The loads listed in this document are only useable for placements comparable with the General Specifications for this turbine. Moreover it is pressumed, that towers similar to a standard tubular Vestas tower has been used.

For different towers and climate conditions Vestas need to be contacted.

Vestas	V47 Standard Foundation for 38,7 m tower, GW under					
Date: 25. Nov 1997	Class:	1	Item no.:	943182.R0	Page:	1 of 46

VESTAS WIND SYSTEMS A/S

STANDARD FOUNDATION FOR VESTAS V47-660/220 & V47-660

38,7 m. TOWER.

Ground water level below foundation.

Drawings

(

Specification

Virring 97.09.01

(27a)

OLE THISTED Rådg. Ingeniørfirma ApS FRI Hvidballegaard, Virringvej 69, Virring, 8660 Skanderborg, Tlf. 86 92 64 88

943182.R0 2

TABLE OF CONTENTS

....

Drawings:

(

V47.10.E View Plan
V47.11.E Vertical Section.
V47.12.E Detail
V47.13.E Horizontal section - Top Reinforcement
V47.14.E Horizontal section - Bottom Reinforcement

Description for carrying out the foundation:

Introduction	1
Ouality control	1
Generally	2
Excavation	2
Steel section and plate reinforcement	3
Concrete	5
Casting	6
Covering and insulation	7
Filling	7
Mounting of tower and start-up	8
Maintenance	8

SOIL

≧ 30° : φ \geq 80 kN/m² : Cv \geq 16 kN/m³ : Es, dyn \geq 75000 kN/m² load) verse force) ng moment) ing moment) wing safeties are included : SPECIFICATIONS ollowing is current. DS 411 DS 415 BBB REMARKS All dimensions are in mm. Concerning further demands and conditions, for the carrying out of foundation, see detail drawings and specifications. Sag nr. ŝ 009-97 LEM Tegn.nr. V47.10.E - 38,7 m. MODULE TOWERS DATION Mål 1:75 97.09.01. Dato allegaard, Virringvej 69, Virring, Rev. 97.10.22 Tlf. 86 92 64 88 Skanderborg, , overdrages eller kriftlige tilladelse. Sign. JN/sm på anden måde udnyttes af tred

Foundation upon clay

Dynamic bearing capacity and effective density. LOADS The foundation is calculated for the following extreme loads, stated by VESTAS.

The soil, on which the foundation is placed, must fulfill the following conditions. Foundation upon sand Effective density of filling soil : γ Highest ground water level is presumed to be below foundation. Soil survey has to be done, to secure the bearing capacity

Nd	=	553	kN	(Normàl
Vd	=	252	kN	(Transv
Md	=	8685	kNm	(Bendin
Mvd	=	515	kNm	(Twisti
In t	he	mension	ed l	oads follo
1,0	on	dead lo	ad	
1,3	on	wind lo	ad	
Cal	-ula	ation fo	r fa	atique load

For	the	carrying	out,	the	fc
Cond	crete	e structu	res		
Four	ndat:	ion			:
Basi	Lsbe ⁻	tonbeskri	velse	n	:

Denne tegning er vor ejendom og må ikke kopiere	s,
Rådgivende Ingeniørfirma 🥼 8660	S
THISTED ApS Hvid	b
VIEW PLAN - GWL BELOW FOU	N
Emne EQUINDATION FOR VESTAS V47	
WESTAS WIND SYSTEMS A/S SMED HANSENS VEJ 27, 6940	

FOUNDATION SECTION

The steel section is delivered by VESTAS. Regulation screws, bracings, wiring tubes, etc. are mounted at delivery. The steel section is set upon the cleaning layer, after laying

out the bottom reinforcement net. The section is adjusted to accurate level, vertical as well as

horizontal, by use of the 3 regulation screws, after which the counter nuts are tightened.

The steel section is delivered with surface treatment. The section may not touch the reinforcement, neither in top nor in bottom of the foundation plate.

During casting, which must be done simultaneously both inside and outside the steel section, great accuracy must be shown, to secure that it doesn't displace. Max. vertical deviation, after concreting, may be ±4 mm.

For further information, see specification.

REINFORCEMENT

Y = rib bar Ks 550 (fyk ≥ 550 N/mm²).

CONCRETE

to "Basisbetonbeskrivelsen (BBB)". Following defines the types of concrete:

Environment class	Moderate
Strenght class	30 MPa
Control class	Normal
Max. gravel size	32 mm
Water/cement	0,55

Covering concrete layer against soil = 100 mm. DS 411.

REMARKS

All dimension are in mm.

Sag	Sag nr.	
VESTAS WIND SYSTEMS A/S SMED HANSENS VEJ 27, 6940 LEM	009-97	
Emme FOUNDATION FOR VESTAS V47 - 38,7 m. MODULE TOWERS VERTICAL SECTION - GWL BELOW FOUNDATION	Tegn.n V Mål	r. 7 47.11. E 1:40
THISTED ApS Rådgivende Ingenjørfirma A 8660 Skanderborg, Tlf. 86 92 64 88	Dato Rev.	97.09.01. 97.10.22.
Denne tegning er vor ejendom og må ikke kopieres, overdrages eller på anden måde udnyttes af trediemand uden vor skriftlige tilladelse.	Sign.	JN/sm

- Concrete control according to "Dansk Ingeniørforenings Code"

All dimensions are in mm.

	Sag nr.	
LEM		009-97
- 38,7 m. MODULE TOWERS	Tegn.n	r. 747.12.E
Iballegaard, Virringvej 69, Viirring,	Mai Dato Rev.	97.09.01. 97.10.22.
Skanderborg, Tlf. 86 92 64 88 is, overdrages eller skriftlige tilladelse.	Sign.	JN/sm

TOP REINFORCEMENT

Cross wise reinforcement - 40 pcs. Y20/250 mm - L = 8200 mm. The reinforcement bars opposite the steel section 24 pcs. Y20/250 mm - L = 2500 mm16 pcs. Y20/250 mm - L = 2800 mm8 pcs. Y20/250 mm - L = 3250 mm

Edge bows Y20/500 mm 52 pcs.

Star reinforcement through holes in steel section -45 pcs. Y20 - L = 2700 mm. 1600 mm outside steel section and 1100 mm inside.

45 pcs. Y25 anchor U-bows, placed as shown in drawing V47.12.E.

3 pcs. Y20 ring bows - in steel section. D = 1000, 1800 and 2600 mm. All dimensions are at centre lines. Min. bending diameter is D = 6xd.

Supports for top reinforcement in the necessary amount.

REMARKS

All dimensions are in mm. The reinforcement is tied up in every second cross.

Steel section, with through going reinforcement, is rotated, to place the tower door in right direction.

Sag	Sag nr.	
VESTAS WIND SYSTEMS A/S SMED HANSENS VEJ 27, 694C LEM		009-97
Emne FOUNDATION FOR VESTAS V47 - 38,7 m. MODULE TOWERS HORIZONTAL SECTION - GWL BELOW FOUNDATION	Tegn.n V Mål	r. 7 47.13.E 1:50
THISTED ApS Bådgivende Ingeniarfirma & B660 Skanderborg, Tlf. 86 92 64 88	Dato Rev.	97.09.01. 97.10.22.
Denne tegning er vor ejendom og må ikke kopieres, overdrages eller på anden måde udnyttes af trediemand uden vor skriftlige tilladelse.	Sign.	JN/sm

BOTTOM REINFORCEMENT

Supports for top reinforcement in the necessary amount.

REMARKS

All dimensions are in mm. The reinforcement is tied up in every second cross.

Steel section, with through going reinforcement, is rotated, to place the tower door in right direction.

Sag	Sag nr.	
VESTAS WIND SYSTEMS A/S SMED HANSENS VEJ 27, 6940 LEM		009-97
Emne FOUNDATION FOR VESTAS V47 - 38,7 m. MODULE TOWERS HORIZONTAL SECTION - GWL BELOW FOUNDATION	Tegn.n T Mål	r. 7 47.14.E 1:50
THISTED ApS Rådgivende IngeniørfirmaHvidballegaard, Virringvej 69, Virring, 8660 Skanderborg,Tlf. 86 92 64 88	Dato Rev.	97.09.01. 97.10.22.
Denne tegning er vor ejendom og må ikke kopieres, overdrages eller på anden måde udnyttes af trediemand uden vor skriftlige tilladelse.	Sign.	JN/sm

Cross wise reinforcement - 64 pcs. Y25/250 mm - L = 8200 mm.

OLE THISTED Rådg. Ingeniørfirma Aps FRI

STANDARD FOUNDATION WITH STEEL SECTION FOR VESTAS V47-660/220 AND V47-660.

Introduction

The foundation, shown in the drawings and like wise described in the specification, is a standard foundation.

The project is carried out on a presuming basis, concerning the conditions of the soil.

To make use of the foundation in a current site, it is very important to fulfill the conditions, which are shown in the project. Soil survey must be carried out, as well as supervision and control is done, as described in the following.

If the conditions are not fulfilled in all respect, the foundation can not be used. A special foundation, based on the current conditions, has to be carried out.

Quality control

Quality control according to § 4.2 in the regulations from the construction administration dated 12. november 1986, dealing with quality control on construction.

To ensure fulfillment and dokumentation of the project demands, the contractor has to organize his control program, to fulfill the specifications concerning the carrying out.

The contractor has to work out a satisfactory control program according to the demands.

The control program has to describe quality demands, accept criteria, places of control, methodes of control, extent of control, the responsible and dokumentation as described in the following individual paragraphs.

OLE THISTED Rådg, Ingeniørfirma Aps FRI

The contractor has to keep journals og control and matching dokumentation for at least 5 years.

The contractor and his colleagues have to participate in going through the project before the beginning of the work.

Generally

The foundation has to be carried out according to the drawings and this specification.

The foundation is carried out according to Dansk Ingeniørforening's codes.

Ordinary conditions corcerning work and deliverances (AB 92). Concrete structures - DS 411. Foundation - DS 415. Basisbetonbeskrivelsen BBB.

From VESTAS is delivered the steel section with stiffenings, regulation scews and wiring tubes mounted as shown on the drawing.

The siting of the turbine (level and deposit point) is presumed to be selected by the owner.

Soil survey has to be done, to ensure that the demands put to the soil on location, are fulfilled.

The soil survey has to be sent to the consulting engineer, for control and additional calculation of the standard foundation, for the current soil conditions.

Excavation

Excavation to the depth shown on the drawing has to be done. The bottom of the excavation is levelled and carefully cleaned for loose

OLE THISTED Rådg. Ingeniørfirma Aps FRI

parts.

If the ground water level is high, water in the excavation during the work must be expected. The necessary arrangements such as pumping to drain off the water has to be carried out, to ensure that the work can be done in a dry excavation.

The excavation has to be done without rooting up the bottom, and without using heavy machinery on the finished excavation level.

If poor conditions or water break through is detected any where in the excavations, the digging <u>must</u> stop immidiately. Consult supervision before continuation.

Too deep an excavation is compensated with filling of sand og concrete decided by superviser.

Considering the danger of softening the bottom through a longer time of inundation, the work in the excavation is started immediately after the last of soil in the excavation is removed.

An effective draining is started.

Bottom of excavation is compacted, and a cleaning layer of minimum 100 mm concrete is layed out.

Presuming that the soil is in such condition, that formwork to the sides of the foundation is dispensable, it is allowed to cast the sides directly against soil, on condition that the covering concrete layer is increased to a minimum of a 100 mm.

Steel section and plate reinforcement

The reinforcement bars is delivered by the producer or importer, who holds certifying licence and every deliverance must be clearly signed according to DS.

943182.R0 11

Sag 97.069 Dato 97.09.01

OLE THISTED

Rådg. Ingeniørfirma ApS FRI

The reinforcement control, which is subjected to DS-licence arrangement, <u>must</u> include acceptance check, which means inspection (apperance, signing, condition) and control of delivery note.

The reinforcement bars, which are delivered bended, <u>must</u> be accompanied by a delivery note holding information about type of reinforcement and manufacturing works.

Measuring control of bended reinforcement bars is done at the supplier previously, arranged between supplier and contractor, possibly as a spot test control according to DS 1051. Control results <u>must</u>, if requested, be shown to the superviser.

The contractor must check by delivery, that type and dimension of reinforcement bars are correct.

This dokumentation, delivery notes etc. must be included in control journal.

Binding wire must be anneal wire with diameter larger than or similar to 1,5 mm.

The work begins with setting the bottom reinforcement in the right dimensions. The reinforcement layer is set and blocked up 50 mm above the cleaning layer.

After that the delivered steel section is to be placed upon the cleaning layer, which has been hardened.

The top of the steel section <u>must</u> be completely horizontal, and this is done by adjusting the 3 regulation screws. The work must be carried out very carefully, so that there is no risk, that the tower is standing unbalanced after the assembling.

Please note, that the contractor is responsible, that the top of the steel section does not deviate more than 4 mm from horizontal level, and that the circular shape is preserved.

OLE THISTED Rådg. Ingeniørfirma Aps FRI

Then the Z-bows is led under the steel section, from both the outside and inside.

The star reinforcement is to be led through holes in steel section, and ring bows are mounted inside the pedestal.

The top reinforcement can now be set, with Z-bows, star reinforcement and edge bows as support.

Supports, which make space during the reinforcement- and casting works, are placed as necessary.

All reinforcement must be tied up in every second intersetion.

Considering a possible corrosion of the steel section and reinforcement, the reinforcement <u>must</u> be keept isolated from steel section.

The reinforcement work <u>must</u> be supervised before casting.

Supervision of the reinforcement must include control of right type of reinforcement, dimension and amount. Check that the reinforcement bars are bended, set and corretcly held, and that the covering layer on the reinforcement is fulfilling the demands been made.

Concrete

The concrete must be composed according to the demands stated on the drawings. The concrete must besides that, be composed, mixed and prepared according to Dansk Ingeniørforening's Code, DS 411 - Concrete structures, and

what is written in "Basisbetonbeskrivelsen BBB".

Control journals, according to DS 411, must be prepared. When factory concrete is used, the control of the concrete

943182.R0 13

Sag 97.069 Dato 97.09.01

OLE THISTED

Rådg. Ingeniørfirma ApS FRI

composition can possibly be based on the results from the factory quality control, If this is organized and done according to DSprincipals and if the factory is connected to a recognized control arrangement.

Casting

Casting must be done in one work operation, and there may be no construction joints.

Control journals are prepared.

The formwork must be supervised before every casting, and occasionally conctrol of casting as well as hardening and after-care is done.

Control journals must give information about:

Temperature of concrete and air, concerning winter casting.

The differences of temperature in the concrete.

The time for starting and finishing the different sequences of the castings and possible interruptions during casting.

Time of formwork removal.

Inspection of the hardening concrete.

Great care must be shown during casting. Exceptional great care must shown by casting inside the steel section, to ensure that it does not deviate, but stays in centre of the plate and with horizontal top.

The reinforcement and the steel section must be absolutely clean before casting. Make sure, at casting, that the reinforcement is covered by concrete, as shown on the drawings.

OLE THISTED

Rådg. Ingeniørfirma ApS FRI

The top of the concrete in steel section must be finished with a slope from centre against drainholes, to ensure that there is no concrete above this level. This, out of consideration to the bolted joint between steel section and tower.

The top is to be screeded with a board made of wood (no glazing).

At casting vibrator must be used, and the concrete supply under the lowest flange/rolled ring must be complete, so that there is no cushions at any place.

Covering and insulation

Immediately after the casting, the free surfaces of concrete have to be covered with insulating mats (Winter mats must be used both summer and winter).

Filling can profitably be used as cover, when the concrete has hardened (after 24 hours).

The concrete has to be insulated from both loss of heat and loss of moisture for at least 7 days and nights, summer as well as winter. If the modelling is done before the mentioned 7 days and nights, the soil covering must take place immediately after, and the part of foundation, which is visible, must be insulated form loss of heat and loss of moisture.

Filling

The steel section is protected on the top, on the external side. Before filling, make sure that the surface is intact. Possible damages are to be mended with paint delivered by VESTAS.

Filling around and over the foundation must take place before erecting the tower.

Soil, which is used for backfilling, must fulfill the demands to

943182.R0 15

Sag 97.069 Dato 97.09.01 OLE THISTED

Rådg. Ingeniørfirma ApS FRI

effective density, which are mentioned in the project. The possibility of using the excavated soil, is valued and agreed with the superviser. If supply is necessary, it has to fulfill mentioned demands.

At a distance of 500 mm from the pedestal, the filling must be sand or gravel. This, to prevent corrosion of steel section because of possible aggressive soil.

Mounting of tower and start-up

Presuming that ordinairy Portland-cement is used for the concrete, full strength at normal conditions is achieved after 28 days and nights of hardening.

If rapid hardening Portland-cement is used, the corresponding time is 14 days and nights.

The wind turbine can be mounted and started-up, when the concrete has achieved enough strength.

Please note, that velocity of the strength development depends very much on temperature- and moisture conditions on location. Normally the concrete has achieved 80% of the strength after half of the hardening time.

Maintenance

It is recommended, with suitable annual intervals, for instance in connection with maintenance of the tower, to inspect the surface of the steel section.

If corrosion attacks are discovered, a repair work of the surface <u>must</u> take place.
VESTAS WIND SYSTEMS A/S

STANDARD FOUNDATION FOR VESTAS V47-660/220 & V47-660

38,7 m. TOWER.

Ground water level below foundation.

Calculations

Virring 97.09.01

OLE THISTEDSag nr.97.069Rådg. Ingeniørfirma ApSFRIHvidballegaard, Virringvej 69, Virring, 8660 Skanderborg, Tlf.86 92 64 88

Sag 97.069 Dato 97.09.01 **OLE THISTED**

Rådg. Ingeniørfirma ApS FRI

GENEREL VIEW DESIGN LOADS ON TOP OF THE FOUNDATION							
	•	Vestas V47-6	60/220 and	1 V47/660	- 38,7 m.	TOWER	
LOADS	•	The loads are stated by the windmill producer for EXTREME WINDLOAD FATIGUE LOAD					
	The loads are stated as shear forces in the center of the tower, on the top of the founda- tion (see sketch). The system of co-ordinats is calculated rota- ting 360 degrees, for wind in arbitrary direc tion.						
		The loads in according to	cludes pa: DS 472:	rtial coe	fficients		
		gf = 1.30 gf = 1.00	on windlo on dead l	ads oads			
		gf = 1.00	on fatigu	e loads			
		Fatigue load Max. = mean	ls: + 1/2*wid	th		ş	
		Min. = mean	- 1/2*wid	th			
FOUNDATION LO	ADS	EXTREME	FATIGUE Mean	LOADS AT Width	n = 10^7 Max.	Min.	
Fx	(kN)	229	0	0	0	0	
Fy	(kN)	107	75	42	96	54	
Fz	(kN)	553	553	31	569	538	
Мх	(kNm)	8590	3273	1977	4262	2285	

FOUNDATION LOADS IN ARBITRARY DIRECTIONS Nd (kNm) 553 31 569 538

My

Mz

Nd	(kNm)	553	31	569	538
Vd	(kNm)	252	42	96	54
Md	(kNm)	8685	1982	4271	2289
Mdv	(kNm)	515	327	190	-138

(kNm) 1275 220 138 289 151

(kNm) 515 26 327 190 -138

Standardfundament Vestas V47/660-38,7 m. tårn, GWL below Foundation.

Sag 97.069 Dato 97.09.01

(

OLE THISTED

Rådg. Ingeniørfirma ApS FRI

CALCULATION	SQUARE FOUNDATION WITH	I CIRCULAR PE	DESTAL	
	Vestas V47-660/220 and	1 V47/660 - 3	8,7 m. TOWER	
	Extrem load case - GWI	below found	lation	
	The assumptions are the given load data, given the chosen foundation	ne given gene n soil data a geometry.	eral data, and	
	Soil pressure are calc with the bearing capac The internal forces and 4 lines through the p	culated to co city of the o re calculated edestal, see	ompare ground. d in sketch.	
Codes:	Dansk Ingeniørforenin	gs codes:		
	DS 409 Definitions o	f safety		
	DS 415 Foundation			
GENERAL DATA	The construction clas	s according	to the codes	
Safety class Foundation class	(lav/normal/høj) (lempet/normal/skærpe	: norm t) : norm	al al	
LOAD DATA	Design loads on top c	f foundation		
	Normal (dead load) Transverse (wind) Moment (wind) Torsion (wind)	Nd = Vd = Md = Mdv =	553 kN 252 kN 8685 kNm 515 kNm	
Safety factors inc	cluded in the above men	tioned loads		
	Permanent loads Wind loads	gfg = gfp =	1,00 1,30	
	Loads working in all	directions.		
	The foundation are calculated for loads in 2 directions - parrellel to the sides and 45 degrees to the sides. All intermediate directions are assumed to be fulfillede by this.			
	Because there are no proportion between the loads and the ground pressure, an additional calculation is carried out with an increased loadfactor on the wind load. Jordtryk og snitkræfter sammenholdes med ma-			
	stability	gfx =	1,50	

Standardfundament Vestas V47/660-38,7 m. tarn, GWL below Foundation.

OLE THISTED Rådg. Ingeniørfirma Aps FRI

(

943182.R0 20

OLE THISTED

Sag 97.069 Dato 97.09.01

(

12

X

OLE THISTED Rådg. Ingeniørfirma ApS FRI

97.069 Sag Dato 97.09.01

Calculation for clay and or sand. SOIL DATA If both types of ground are given, calculation for both. Min. bearing capacity is basic for . . the calculation of the foundation. _____ Friction angle fi= 30 deg Shearing strength cu= 80 kN/m2 Sand or gravel: Clay: (O states that the type is not given) 16 kN/m3 Over foundation level gl= Densities: 10 kN/m3 Under foundation level g2= Gvs= 1,90 m Depth under ground Ground water: 0 deg Ground dead load beta= Squre base of footing with one cirkular FOUNDATION DATA pedestal (see sketch). Length = with L= 8,30 m Thickness at pedestal t1= 1,00 m Thickness at edge t2= 0,80 m Depth of foundatio d= 1.00Plate Diameter ds= 3,02 m Height of pedestal hs= 1,30 m Pedestal -----Average thickness of plate) 0,900 m) Weight of foundation incl. buoyancy: CALCULATION = 1487,5 kN Plate = 222,8 kN Pedestal = 999,8 kN Soil (incl. beta) = 0,0 kN Buoyancy (on concr _____ = 2710,0 kNG _____ Design factors at ground capacity (DS 415 - 5.2) Tangens to frict.angle gfi= 1,20 Cohesion at bear.cap. gcl= 1,80 Design factors at ground material:) = 25,7 grader Ng = 7,26 Ng = 11,47 = 44,4 kN/m2 Sand and gravel fid = atan(tan(fi)/gfi) 44.4 kN/m2cud = cu/gcl

Clay

(

OLE THISTED Rådg. Ingeniørfirma ApS FRI

FOUNDATION CALCULATION - SOIL PRESSURE/BEARING CAPACITY

The pressure is calculated equally spread over the effective part of the foundation plate, which is symmetric around the vertical load (see sketch).

Design pressure on the ground is compared with the design bearing capacities for 2 load cases in 2 directions.

If the vertical load has large eccentricity (e > 0.3*L) then the calculation is carried out for a soil break down under the foundation part without load. Also calculation for sliding caused by horizontal loads. (Vd og Mvd).

* states that the ground type is not given or that e for the actual case is less than 0.3*L.

> e = (Md + Vd*(hs+t1)) / (Nd+G) = Mdf / (Nd+G)f = (Nd+G) / A

GROUND PRI	ESSURE			GIVEN	LOAD	STABIL	ITY
		Dire	ection	Parallel	Cross	Parallel	Cross
Moment at		Mdf	(kNm)	9265	9265	10691	10691
ground le	vel						
Eccentric	ity	е	(m)	2,84	2,84	3,28	3,28
		b	(m)	2,62	4,28	1,75	3,67
Areas		A1	(m2)	21,76		14,50	
		A2	(m2)		18,36		13,44
Ground pr	essure	f ()	cN/m2)	150	178	225	243
BEARING C	APACITY						
Sand and	gravel	ss()	kN/m2)	376	424	565	668
Clay	5	sl()	kN/m2)	256	281	430	488
		At :	large e	eccen. (e>	>0.3*L / e	>0.3*L*sqrt	.(2))
Sand and	gravel	ss()	kN/m2)	193	*	280	*
Clay	J- - ·	sl(kN/m2)	263	*	463	*
Min. bear	ing	s ()	kN/m2)	193	281	280	488
capacity	2	•		OK	OK	OK	OK
SLIDING Sand and	oravel	Saf	ety com	ntrol	Vd' = sqr	t(Vd^2+(Mvo	i/e)^2)
(Nd+G)*ta	n(fid)/Vd'		=> 1	5,05	5,05	5,49	5,49
Clay	A*cud/Vd'		=> 1	3,11	2,63	3,38	3,14
	0.4*(Nd+G)/Vd	l'=> 1	4,20	4,20	3,80	3,80
		Kon	trol	OK	OK	OK	OK

Standardfundament Vestas V47/660-38,7 m. tarn, GWL below Foundation.

(

943182.R0 23 OLE THISTED Rådg. Ingeniørfirma ApS FRI

INTERNAL FORCES IN PLATE

The internal forces are determined in the 4 lines through the pedestal edges, as shown on the sketch, and in the fourth part devided distances fra the edges.

Moments, transformed to tension in the base plate, are positive. Transverse loads are positive in the upper direction.

Dead load of the foundation is equally spread over the plate. Dead load $g=39,34 \text{ kN/m}^2$

If the plate surface is with a slope a equivalent, uniform thickness of the plate is calculated, to maintain an egual bearing capacity. The thickness of the plate to use in calculation of the bear-

ing capacity of the reinforced concrete is

tmO =	936 mm
tm1 =	926 mm
tm2 =	895 mm
tm3 =	853 mm
	tm0 = tm1 = tm2 = tm3 =

DESIGNED MOMENTS IN PLATE (kNm/m)

Гор	mo	=	-1/2*g*bx^2
T .			• •

Bottom	mu =	f*b*(bx-b/2) + mo	for	b<=bx
	mu =	f/2*bx^2 + mo	for	b> bx

Compared to DS 411 - 6.1.2. moments are spread over the width $b' = b+0.4*bx \pmod{2} = L$

Max. moments:	G	IVEN LOAD		STABILITY
kNm/m	mu	mo	mu	m0
Section at pedestal	510,1	-187,1	681,9	-187,1
1/4*bx from pedestal	296,0	-105,2	460,6	-105,2
2/4*bx from pedestal	138,0	-46,8	220,7	-46,8
3/4*bx from pedestal	37,6	-11,7	55,2	-11,7

DESIGNED TRANSVERSE LOADS IN PLATE (kN/m)

Downwards	vo = -g*bx
-----------	------------

Upwards	vu	=	f*b +	vo	for	b<=	bx
-	vu	=	f*bx +	vo vo	for	b>	bx

Max. transverse loads	G	IVEN LOAD		STABILITY
kN/m	vu	vo	vu	vo
Section at pedestal	304,3	-121,3	438,8	-121,3
1/4*bx from pedestal	255,9	-91,0	357,3	-91,0
2/4*bx from pedestal	178,9	-60,7	286,2	-60,7
3/4*bx from pedestal	97,5	-30,3	143,1	-30,3

943182.R0 24

OLE THISTED Rådg. Ingeniørfirma Aps FRI

SQUARE FOUNDATION WITH CIRCULAR PEDESTAL CALCULATION Vestas V47-660/220 and V47/660 - 38,7 m. TOWER Max. fatique load یہ بن کے بنا ہو کے ایک بن کا بنے کا کا بن کا یہ تی تی جو کا واقع نے کرنا کے جن کا جو بن کے ان کے لیے کا ہے کا پ The assumptions are the given general data, given fatique loads and the chosen foundation geometry Soil pressure are calculated ot compare with the bearing capacity of the ground. The internal forces are calculated in 4 lines through the pedestal, see sketch. Dansk Ingeniørforenings codes: Codes: DS 409 Definitions of safety (1982) (1984)DS 415 Foundation Th construction class according to the codes DATA IN GENERAL (lav/normal/høj) normal : Safety class (lempet/normal/skærpet) : normal Foundation class Designed loads on top of foundation LOAD DATA 569 kN Normal (dead load)Nd =Transverse (wind)Vd =Moment (wind)Md =Torsion (winMdv = 96 kN 4271 kNm 190 kNm Safety factors included in the above mentioned loads 1,00 gfg= Permanent loads Wind loads 1,00 gfp= Loads working in all directions The foundation are calculated for loads in 2 directions - parallel to the sides and 45 degrees to the sides. All intermediate directions are assumed to be fulfilled by this. Because there are no proportion between the loads and the ground pressure, an additional calculation is carried out with an increased loadfactor on the wind load. Jordtryk og snitkræfter sammenholdes med materialestyrker med gm = 1,00 gfx = 1,00stability

Standardfundament Vestas V47/660-38,7 m. tarn, GWL below Foundation.

OLE THISTED

Rådg. Ingeniørfirma ApS FRI

Sag 97.069 Dato 97.09.01

(

SOIL DATA Calculation for clay and or sand.							
	If both types of ground are given, calculation for both. Min. bearing capacity is basic for the calculation of the foundation.						
Sand or gravel: Clay:	Friction angle Shearing strength	fi= cu=	30 80	grader kN/m2			
	(0 states that the type	is not	given)				
Densities:	Over foundation level Under foundation level	g1= g2=	16 10	kN/m3 kN/m3			
Ground water:	Depth under ground	Gvs=	1,90	m			
	Ground dead load	beta=	0	grader			
FOUNDATION DATA	Squre base of footing w pedestal (see sketch).	ith one	cirkula	ır			
Plate	Length = with	 L=	8,30	m			
	Thickness at pedestal	t1=	1,00	m.			
	Thickness at edge	t2=	0,80	m			
	Depth of foundatio	d=	1,90	m			
Pedestal	Diameter	ds=	3,02	m			
reueblui	Height of pedestal	hs=	1,30	m			
	Average thickness of pl overflade.	late) tm=	0,900	m)			
CALCULATION	Weigth of foundation in	ncl. bud	oyancy:				
	Plate	=	1487,5	kn			
	Pedestal	=	222,8	kN			
	Soil (incl obelisk	=	999,8	kN			
	Buoyancy (on concr	=	0,0	kN -			
	G	=	2710,0	kN -			
Design factors at	ground capacity (DS 415	5 - 5.2	>				
	Tangens to fricti Cohesion at bearing ca	gfi= pacity	1,20 1,80				
Design factors at	ground material:						
Sand and gravel	φd = atan(tan(fi)/	=	25,7	grader			
		Na =	7.26	-			
		Ng =	11,47				
Clay	cud = cu/gcl	- =	44,4	kN/m2			

Sag 97.069 Dato 97.09.01

(

OLE THISTER Rådg. Ingeniørfirma Aps FRI

FOUNDATION CALCULATION - SOIL PRESSURE/BEARING CAPACITY

The pressure is calculated equally spread over the effective part of the foundation plate, which is symmetric around the vertical load (see sketch).

Design pressure on the ground is compared with the design bearing capacities for 2 load cases in 2 directions.

If the vertical load has large eccentricity (e > 0.3*L) then the calculation is carried out for a soil break down under the foundation part without load. Also calculation for sliding caused by horizontal loads. (Vd og Mvd).

* states that the ground type is not given or that e for the actual case is less than 0.3*L.

> e = (Md + Vd*(hs+t1)) / (Nd+G) = Mdf / (Nd+G)f = (Nd+G) / A

GROUND PRE	SSURE			GIVEN	LOAD	STABIL:	ITY
	1	Dire	ection	Parallel	Cross	Parallel	Cross
Moment at ground lev	zel	Mdf	(kNm)	4492	4492	4492	4492
Eccentrici	tv	e	(m)	1,37	1,37	1,37	1,37
Eccencrici	LCJ	b b	() (m)	5.56	6.36	5,56	6,36
D mood		א ז מ	(m2)	46.15		46,15	·
ALEAS		A2	(m2)	10/20	40,48	• - •	40,48
Ground pre	essure	f (}	cN/m2)	71	81	71	81
BEARING CA	APACITY	ved	direkt	e funderi	.ng		
Sand and o	gravel	ss()	kN/m2)	504	517	864	882
Clay	yz	sl()	kN/m2)	286	301	494	520
		At	large e	eccen. (e)	≻0.3*L / e	>0.3*L*sqrt	(2))
Sand and	gravel	ss ()	kN/m2)	*	*	*	*
Clay	y= - ·	sl(kN/m2)	*	*	*	*
		~					
Min. bear	ing	s (kN/m2)	286	301	494	520
capacity				OK	OK 	OK	ОК
SLIDING Sand and	gravel	Saf	ety co	ntrol	Vd' = sqr	t(Vd^2+(Mvo	d/e)^2)
(Nd+G)*ta	n(fid)/Vd'		=> 1	9,37	9,37	11,24	11,24
Clay	A*cud/Vd'		=> 1	12,18	10,69	21,93	19,23
	0.4*(Nd+G)/Vo	1'=> 1	7,79	7,79	7,79	7,79
		Kon	trol	OK	OK	OK	OK
					~~		

OLE THISTED Rådg. Ingeniørfirma Aps FRI

943182.R0 27

INTERNAL FORCES IN PLATE

The internal forces are determined in the 4 lines through the pedestal edges, as shown on the sketch, and in the fourth part devided distances fra the edges.

Moments, transformed to tension in the base plate, are positive. Transverse loads are positive in the upper direction.

Dead load of the foundation is equally spread over the plate. Dead load g=39,34 kN/m2

If the plate surface is with a slope a equivalent, uniform thickness of the plate is calculated, to maintain an equal bearing capacity. The thickness of the plate to use in calculation of the bearing capacity of the reinforced concrete is

Section at pedesta	tm0 =	936 i	mm
1/4*bx from pedest	tml =	926	mm
2/4*bx from pedest	tm2 =	895	mm
3/4*bx from pedest	tm3 =	853	mm

DESIGNED MOMENTS IN PLATE (kNm/m)

Top $mo = -1/2*g*bx^2$

Bottom mu = f*b*(bx-b/2) + mo for b<=bx $mu = f/2*bx^2 + mo$ for b> bx

Compared to DS 411 - 6.1.2. moments are spread over the width b' = b+0.4*bx (max. b' = L)

Max. moments:		GIVEN LOAD		STABILITY
kNm/m	mu	mo	mu	mo
Section at pedestal	150,8	-187,1	150,8	-187,1
1/4*bx from pedestal	84,8	-105,2	84,8	-105,2
2/4*bx from pedestal	41,0	-46,8	41,0	-46,8
3/4*bx from pedestal	11,3	-11,7	11,3	-11,7
				

DESIGNED TRANSVERSE LOADS IN PLATE (kN/m)

Downwards vo = -g*bx

í

Upwards vu = f*b + vo for b<=bx vu = f*bx + vo for b> bx

Max. transverse loads	G	IVEN LOAD	ST	STABILITY		
kN/m	vu	vo	vu	vo		
Section at pedestal	97,8	-121,3	97,8	-121,3		
1/4*bx from pedestal	73,3	-91,0	73,3	-91,0		
2/4*bx from pedestal	53,2	-60,7	53,2	-60,7		
3/4*bx from pedestal	29,2	-30,3	29,2	-30,3		

OLE THISTLD Rådg. Ingeniørfirma Aps FRI

Sag 97.069 Dato 97.09.01

(

CAT CUL ATION	SOUARE FOUNDATION WIT	H CIRCULAR PEDESTAL				
CALCULATION	Vestas V47-660/220 and V47/660 - 38,7 m. TOWER					
	Min. fatique load					
	The assumptions are t given fatique loads a the chosen foundation	he given general data, nd geometry				
	Soil pressure are cal with the bearing capa The internal forces a 4 lines through the p	culated ot compare city of the ground. are calculated in pedestal, see sketch.				
Codes:	Dansk Ingeniørforenir	ngs codes:				
	DS 409 Definitions of	of safety (1982)				
	DS 415 Foundation	(1984)				
DATA IN GENERAL	Th construction class	s according to the codes				
Safety class Foundation class	(lav/normal/høj) (lempet/normal/skærp	: normal et) : normal				
LOAD DATA	Designed loads on to	p of foundation				
	Normal (dead load) Transverse (wind) Moment (wind) Torsion (win	Nd = 538 kN Vd = 54 kN Md = 2289 kNm Mdv = 138 kNm				
Safety factors in	cluded in the above me	ntioned loads				
	Permanent loads Wind loads	gfg= 1,00 gfp= 1,00				
	Loads working in all	directions				
	The foundation are of directions - paralle 45 degrees to the si All intermediate din be fulfilled by this	calculated for loads in 2 el to the sides and ides. rections are assumed to s.				
	Because there are no loads and the ground calculation is carr loadfactor on the w Jordtryk og snitkræ terialestyrker med	o proportion between the d pressure, an additional ied out with an increased ind load. fter sammenholdes med ma- gm = 1,00				
	stability	gfx = 1,00				

943182.R0 29 OLE THISTLU

Rådg. Ingeniørfirma ApS FRI

i

İ

Sag 97.069 Dato 97.09.01

(

SOIL DATA	SOIL DATA Calculation for clay and or sand.						
	If both types of ground are given, calculation for both. Min. bearing capacity is basic for						
	the calculation of the foundation.						
Sand or gravel: Clay:	Friction angle Shearing strength	fi= cu=	30 80	grader kN/m2			
	(0 states that the type	is n					
Densities:	Over foundation level Under foundation level	g1= g2=	16 10	kN/m3 kN/m3			
Ground water:	Depth under ground	Gvs=	1,90	m			
	Ground dead load	beta=	0	grader			
FOUNDATION DATA	Squre base of footing ware base of states and see sketch).	ith one	e cirkula	r			
Plate	Length = with	 L=	8,30	m			
	Thickness at pedestal	t1=	1,00	m			
	Thickness at edge	t2=	0,80	m			
	Depth of foundatio	d=	1,90	m			
Pedestal	Diameter	ds=	3.02	m			
	Height of pedestal	hs=	1,30	m			
	Average thickness of pla						
	overflade.	tm=	0,900	m)			
CALCULATION	Weigth of foundation in	cl. bud	oyancy:				
	Plate	=	1487,5	kN			
	Pedestal	=	222,8	kN			
	Soil (incl obelisk	=	999,8	kN			
	Buoyancy (on concr	=	0,0	kN			
	G	=	2710,0	kN			
Design factors at o	ground capacity (DS 415	- 5.2)				
	Tangens to fricti Cohesion at bearing cap	gfi= acity	1,20 1,80				
Design factors at	ground material:	_	-				
Sand and gravel	$\varphi d = atan(tan(fi))$	=	25.7	grader			
2 · · · · ·	N	la =	7.26				
	N		11.47				
Clay	cud = cu/gcl	=	44,4	kN/m2			

Standardfundament Vestas V47/660-38,7 m. tårn, GWL below Foundation.

(

943182.R0 30

OLE THISTLE Rådg. Ingeniørfirma Aps FRI

FOUNDATION CALCULATION - SOIL PRESSURE/BEARING CAPACITY

The pressure is calculated equally spread over the effective part of the foundation plate, which is symmetric around the vertical load (see sketch).

Design pressure on the ground is compared with the design bearing capacities for 2 load cases in 2 directions.

If the vertical load has large eccentricity (e > 0.3*L) then the calculation is carried out for a soil break down under the foundation part without load. Also calculation for sliding caused by horizontal loads. (Vd og Mvd).

* states that the ground type is not given or that e for the actual case is less than 0.3*L.

> e = (Md + Vd*(hs+t1)) / (Nd+G) = Mdf / (Nd+G)f = (Nd+G) / A

GROUND PRESSURE		GIVEN	LOAD	STABIL	ITY
	Direction	Parallel	Cross	Parallel	Cross
Moment at ground level	Mdf (kNm)	2414	2414	2414	2414
Eccentricity	e (m)	0,74	0,74	0,74	0,74
2000.0120203	b (m)	6,81	7,25	6,81	7,25
Areas	A1 (m2)	56,55	·	56,55	
	A2 (m2)	·	52,55		52,55
Ground pressure	f (kN/m2)	57	62	57	62
BEARING CAPACITY	ved direkt	ce funderi	.ng		
Sand and gravel	ss(kN/m2)	548	552	945	949
Clay	sl(kN/m2)	295	303	508	522
	At large o	eccen. (e)	>0.3*L / e	>0.3*L*sqrt	:(2))
Sand and gravel	ss(kN/m2)	*	*	*	*
Clay	sl(kN/m2)	*	*	*	*
Min. bearing	s (kN/m2)	295	303	508	522
capacity		OK	OK	OK	OK
SLIDING Sand and gravel	Safety co	ntrol	Vd' = sqr	t(Vd^2+(Mvo	d/e)^2)
(Nd+G)*tan(fid)/Vd'	=> 1	8,11	8,11	9,73	9,73
Clay A*cud/Vd'	=> 1	13,04	12,12	23,48	21,81
0.4*(Nd+G)/Vd'=> 1	6,74	6,74	6,74	6,74
	Kontrol	OK	OK	OK	OK

Standardfundament Vestas V47/660-38,7 m. tarn, GWL below Foundation.

Sag 97.069 Dato 97.09.01

(

1

OLE THISTED Rådg. Ingeniørfirma Aps FRI

INTERNAL FORCES IN PLATE

The internal forces are determined in the 4 lines through the pedestal edges, as shown on the sketch, and in the fourth part devided distances fra the edges.

Moments, transformed to tension in the base plate, are positive. Transverse loads are positive in the upper direction.

Dead load of the foundation is equally spread over the plate. Dead load g=39,34 kN/m2

If the plate surface is with a slope a equivalent, uniform thickness of the plate is calculated, to maintain an equal bearing capacity. The thickness of the plate to use in calculation of the bearing capacity of the reinforced concrete is

Section at pedesta	tm0 =	936 mm
1/4*bx from pedest	tml =	926 mm
2/4*bx from pedest	tm2 =	895 mm
3/4*bx from pedest	tm3 =	853 mm

DESIGNED MOMENTS IN PLATE (kNm/m)

Top $mo = -1/2*g*bx^2$

Bottom	mu	=	f*b*(bx-b/2) + mo	for	b<=bx
	mu	=	f/2*bx^2 + mo	for	b> bx

Compared to DS 411 - 6.1.2. moments are spread over the width b' = b+0.4*bx (max. b' = L)

Max. moments:	G	IVEN LOAD	5	STABILITY
kNm/m	mu	mo	mu	mo
Section at pedestal	86,0	-187,1	86,0	-187,1
1/4*bx from pedestal	48,4	-105,2	48,4	-105,2
2/4*bx from pedestal	21,5	-46,8	21,5	-46,8
3/4*bx from pedestal	5,9	-11,7	5,9	-11,7

DESIGNED TRANSVERSE LOADS IN PLATE (kN/m)

Downwards	vo = -g*b;	ĸ
-----------	------------	---

Upwards vu = f*b + vo for b<=bx vu = f*bx + vo for b> bx

Max. transverse loads	G	STABILITY		
kN/m	vu	vo	vu	vo
Section at pedestal	55,8	-121,3	55,8	-121,3
1/4*bx from pedestal	41,8	-91,0	41,8	-91,0
2/4*bx from pedestal	27,9	-60,7	27,9	-60,7
3/4*bx from pedestal	15,4	-30,3	15,4	-30,3

1

Sag 97.069 Dato 97.09.01

ţ

OLE THISTER

Rådg. Ingeniørfirma ApS FRI

CALCULATION	SQUARE FOUNDATION - EXTREME LOAD					
	The intern	al forces	are deter	mined in	4 section	
PLATE DATA	Plate widt Covering co	h oncrete	b= c=	1000 50	mm mm	
	Concrete q Reinforcem	uality ent qual	fck= fyk=	30 550	N/mm2 N/mm2	
Safaty class Control class	(lav/norma (lempet/no	l/høj) rmal/skær	: pet) :	normal normal		
Design factors	da = dc =	1,80 1,40	fcd = fyd =	16,7 392,9	N/mm2 N/mm2	
CROSSING TOP REINFORCEMENT	Diameter Spacing Computed a (half rein	rea forcement	do= ao= Aso= is presum	20 250 1257 Med in sec	mm mm mm ² /m ction 2 an	
CROSSING BOTTOM REINFORCEMENT	Diameter Spacing Computed a (half rein	rea forcement	du= au= Asu= : is presum	25 250 1963 Med in sec	mm mm mm ² /m ction 2 an	
Min. reinforcement	As min (<	As0 og	=======================================	1231 OF	mm²/m	
INTERNAL FORCES		Sect. 0	Sect. 1	Sect. 2	Sect. 3	
Moments (kNm/m)	Top Bottom	187,1 510,1	105,2 296,0	46,8 138,0	11,7 37,6	
Transverse(kN/m)	Top Bottom	121,3 304,3	91,0 255,9	60,7 178,9	30,3 97,5	
Plate height	t (mm) = hefo = hefu =	936 866 861	926 856 851	895 825 820	853 783 778	
Bearing capacity - method A kNm/m	Mud o.s.	420,4 ок	415,4 OK	< 1/2 r 201,8 OK	einforcemen 191,4 OK	
KNU() U	Mud u.s.	646,6 OK	638,8 OK	< 1/2 F 311,8 OK	295,6 OK	
Transverse stress in plate	to N/mm2 tu N/mm2	0,16 0,39	0,12 0,33	0,08 0,24	0,04 0,14	
	0.7*ftd =	0,67 OK	0,67 OK	0,67 OK	0,67 OK	

OLE THIST__

Rådg. Ingeniørfirma ApS FRI

Sag 97.069 Dato 97.09.01

(

CALCULATION	SQUARE FOUNDATION - STABILITY				
	The intern	al forces	are deter	mined in	4 section
PLATE DATA	Plate widt Covering c	h oncrete	b= c=	1000 50 0	mm mm
	Concrete q Reinforcem	uality Nent qual	fck= fyk=	30 550 0	N/mm2 N/mm2
Safaty class Control class	(lav/norma (lempet/no	l/høj) rmal/skær	: pet) :	normal normal	
Design factors	gc = gs =	1,00 1,00	fcd = fyd =	30,0 550,0	N/mm2 N/mm2
CROSSING TOP REINFORCEMENT	Diameter Spacing Computed a (half rein	rea forcement	do= ao= Aso= is presum	20 250 1257 Med in sec	mm mm mm ² /m tion 2 an
CROSSING BOTTOM REINFORCEMENT	Diameter Spacing Computed a (half rein	rea forcement	du= au= Asu= is presum	25 250 1963 Med in sec	mm mm mm ² /m tion 2 an
INTERNAL FORCES		Sect. 0	Sect. 1	Sect. 2	Sect. 3
Moments (kNm/m)	Top Bottom	187,1 681,9	105,2 460,6	46,8 220,7	11,7 55,2
Transverse(kN/m)	Top Bottom	121,3 304,3	91,0 255,9	60,7 178,9	30,3 97,5
Plate height	t (mm) = hefo = hefu =	936 866 861	926 856 851	895 825 820	853 783 778
Bearing capacity - method A kNm/m	Mud o.s.	590,8 OK	583,9 OK	< 1/2 re 283,1 OK < 1/2 re	inforcemen 268,6 OK inforcemen
	Mud u.s.	910,7 OK	899,9 OK	437,9 OK	415,2 OK
Transverse stress in plate	to N/mm2 tu N/mm2	0,16 0,39	0,12 0,33	0,08 0,24	0,04 0,14
	0.7*ftd =	1,21 OK	1,21 OK	1,21 OK	1,21 OK

Standardfundament Vestas V47/660-38,7 m. tårn, GWL below Foundation.

FRI

OLE THISTED

Rådg. Ingeniørfirma ApS

Sag 97.069 Dato 97.09.01

ł

CALCULATION	SQUARE F	OUNDATION -	FATIQUE		
	The inte	rnal forces	are deter	mined in 4	4 section
PLATE DATA	Plate wi Covering	dth concrete	b= c=	1000 50	mm mm
	Concrete Reinforc	quality ement qual	fck= fyk=	30 550	N/mm2 N/mm2
Safaty class Control class	(lav/nor (lempet/	mal/høj) normal/skær	pet):	normal normal	
Design factors	gc = gc =	1,80 1,40	fcd = fyd =	16,7 392,9	N/mm2 N/mm2
CROSSING TOP REINFORCEMENT	Diameter Spacing Computed (half re	area inforcement	do= ao= Aso= is presum	20 250 1257 ed in sec	mm mm mm ² /m tion 2 an
CROSSING BOTTOM REINFORCEMENT	Diameter Spacing Computed (half re	area inforcement	du= au= Asu= is presum	25 250 1963 ed in sec	mm mm mm ² /m tion 2 an
MAX.FATIQUE INTERNAL FORCES		Sect. 0	Sect. 1	Sect. 2 <1/2 r	Sect. 3 einforcem
Moments (kNm/m)	Top Bottom	187,1 150,8	105,2 84,8	46,8 41,0	11,7 11,3
Transverse(kN/m)	Top Bottom 	121,3 97,8	91,0 73,3	60,7 53,2	30,3 29,2
MIN. FATIQUE INTERNAL FORCES		Sect. O	Sect. 1	Sect. 2 <1/2 r	Sect. 3 einforceme
Moments (kNm/m)	Top Bottom	187,1 86,0	105,2 48,4	46,8 21,5	11,7 5,9
Transverse(kN/m)	Top Bottom 	121,3 55,8	91,0 41,8	60,7 27,9	30,3 15,4
Plate height	t (mm) hefo hefu	= 936 = 866 = 861	926 [.] 856 851	895 825 820	853 783 778

Sag 97.069 Dato 97.09.01

OL	E	THIST	her
Rådg.	Inge	niørfirma ApS	FRI

FATIQUE

Fatique control in the concrete according to Aas-Jakobsens formula: log n = (1-smax/fcf)/0.0064/(1-smin/smax)

Fatique stress in the reinforcement according to DS 412-B.6.6.1 curve b: fdfat = $(k*10^{12}/10^{7})^{(1/m)}/gsfat*f1$ f1 = 1.00/1.10/1.15 for Fe360/Fe/430/Fe/510

BENDING STRESS METHOD B

Section 0

(

		Max.	Min.	
Concrete stress	sco N/mm2 scu N/mm2	2,7 1,8	2,7 1,1	
	Frequency log n => 7	No fatiqu 376	ok ok	Stress width
Reinforcement stress	sso N/mm2 ssu N/mm2 fdfat =	184,1 95,9	184,1 60,3 OK	0,0 35,6 105,7
Section 1		Max.	Min.	
Concrete stress	sco N/mm2 scu N/mm2 Frequency	1,5 1,0 No fatiqu	1,5 0,6 OK	

	Frequency	No fatiqu	OK	
	log n => 7	341	OK	
				Stress width
	sso N/mm2	104,8	104,8	0,0
Reinforcement stress	ssu N/mm2	55,2	31,5	23,7
	fdfat =		OK	105,7

97.069 Sag Dato 97.09.01

OLE THIST	Ŀν
Rådg. Ingeniørfirma ApS	FRI

Section 2			Max.	Min.	
Concrete stress	sco N/mm2		1,0	1,0	
	scu N/mm2		0,6	0,3	
	Frequency	No	fatiqu	OK	
	$\log n => 7$		316	OK	
					Stress width
Reinforcement	sso N/mm2	ک فت ننب ند ها بده دیر	94,9	94,9	0,0
stress	ssu N/mm2		49,2	25,8	23,4
	fdfat =			OK	105,7

Section 3

(

		Max.	Min.	
Concrete stress	sco N/mm2	0,3	0,3	
	scu N/mm2	0,2	0,1	
	Frequency	No fatiqu	ОК	
	log n => 7	325	OK	
	-			Stress width
		هه من هه هه من الله من هة من هو من من من من من من من ه		
Reinforcement	sso N/mm2	25,0	25,0	0,0
stress	ssu N/mm2	15,7	8,3	7,5
	fdfat =		OK	105,7

TRANSVERSE STRESS IN PLATE

Section 0 According to DS 411 - 6.2.2.1 the formal transv stress is t = Vd*1000/b/hef/0.9.

Condtion $t \le 0.7$	*ftd		
	Max.	Min.	
to N/mm2	0,16	0,16	
tu N/mm2	0,13	0,07	
0.7*ftd =	0,67	0,67	
		OK	
Frequency	No fatiqu	OK	
log n >= 7	296	OK	

Sag97.069Dato97.09.01

0	L	E	1	H	S	ST.	ΈD
		-		~		~	

Rådg. Ingeniørfirma ApS FRI

Section 1

Condtion t	: <= 0.7*ftd	Max.	Min.
to N/mm2	0	,12 0,	12
tu N/mm2	0	,10 0,	.05
0.7*ftd =	0	,67 0,	. 67
			OK
Frequency	No 1	fatiqu	OK
log n >= 7		312	OK

Section 2

(.

Condtion t <= 0.7	ftd Max.	Min.	
to N/mm2	0,08	0,08	
tu N/mm2	0,07	0,04	
0.7*ftd =	0,67	0,67	
		OK	
Frequency	No fatiqu	ок	
log n >= 7	293	OK	

.

Section 3

Condtion t <=	0.7*ftd		
	Max.	Min.	
to N/mm2	0,04	0,04	
tu N/mm2	0,04	0,02	
0.7*ftd =	0,67	0,67	
		OK	
Frequency	No fatiqu	OK	
log n >= 7	309	OK	

97.069 Sag 97.09.01 Dato

OLE THISTED Rådg. Ingeniørfirma ApS

FRI

CALCULATION	STAR REINFORCEMENT						
	Star reinford in the steel top reinforce	cemer sect ement	it are ion, in p	put t as rep late w	hrough the lacement f hich are c	holes or the ut.	
Pedestal:	Diametre	ds	=	3015	mm		
Reinforcement in top:	Diametre Distance	d a	-	20 250	mni mm		
Moments:	In section Capacity	Mo Muđ	=	187,1 420,4	kNm/m kNm/m		
STAR REINFORCEMENT:	Diametre Number	dr nr	=	20 45	mm pcs		
Calculation:	Necessary to	p re:	inford	cement	in cut		
	As = D/a*pi/	4*d^:	2*M0/}	lud =	1686	mm2	
	Star reinfor	ceme	nt:				
	v = 360/no Number of ba	rs i	nside	=	8,00	deg	
	an 90 deg. a	ngle	norae		11,25	pcs	
	Asr = pi/4*d	r^2*	sum(co	osv) =	3346	mm2	
	> As OK						
				/	, d	,	

dr ds ¥ ¥

.

(

943182.R0 39

OLE THISTEN Rådg. Ingeniørfirma Aps FRI

CALCULATION STEEL SECTION WITH ANCHOR RING								
	The calculation according to danish code DS 412 - Steel structures.							
	Calculating fatique loads on steel construction, it is the width which is essential.							
LOADS	Design loads on top	of pedestal						
	Extreem lo	oad Fa Widt	ntique le h at n =	oads : 10^7				
	Nd (kN) 553		31					
	Vd (kN) 252		42					
	Md (kNm) 8685		1982					
	Mvd (kNm) 515		327					
At anchor ring	Mda (kNm) 9192		2066.3					
ne anenor ring	Vd and Mvd pick up	partly side	pressur	e and				
	friction between st	eel section	and con	crete.				
Pedestal	Outer diameter	ds =	3015	mm				
geometry	Pedestal height	hs =	2011	mm				
-	Plate thickness	ts =	15	mm				
	Reinforcement holes Diame	nh = ter dh =	45 30	pcs mm				
	Anchor ring Thickne	ss ta =	30	mm				
	Width	ba =	150	mm				
	Welding class	c1 =	1,0					
Materials	Steel plate	fyk =	235	N/mm2				
	Anchor ring	fyk =	235	N/mm2				
Safety class	Normal	gm =	1,28					
Control class	Normal	gmfat =	1,56					
PEDESTAL PLATE	Section:							
	dsi = ds-2*ts	=	2985	mm				
	dm = ds-ts	=	3000	mm				
	$A = pi/4*(ds^2-dsi^2)$	2) =	141,37	*10^3 mm2				
	$W = pi/32*(ds^4-ds)$.~4)/ds =	105,50	*10"6 mm3				
	Section at holes:							
	Ared = A-nh*dh*ts	=	121,12	*10^3 mm2				
	tred = Ared/pi/ds	=	12,79	mm				
	dsired = ds-2*tred	=	2989	mm				
	$Wred = pi/32*(ds^{4}-$	-dsired ⁴)/d	ls					
		. =	90,14	*10^6 mm3				

Standardfundament Vestas V47/660-38,7 m. tarn, GWL below Foundation.

Side 23 af 29

Sag 97.069 Dato 97.09.01

(

Side 24 af 29

(

943182.R0 41

OLE THISTLE Rådg. Ingeniørfirma Aps FRI

Strees in material	(N/mm2)	s = Nd*10 fyd = fy/)^3/A +- M 'gm	da*10^6/	W			
Fatique		fdfat = (k*10 ¹² /10 ⁷) ⁽¹ /m)*f1/gmfat						
		Curve	b	c	l e			
		m =	= 4,76	3,00	3,00			
		k =	= 110000	1,51	1,03			
		f1 = 1.00)/1.10/1.1	.5 for Fe	360/Fe430/Fe	e510		
			Ekstem	last	Fatique 3	loads		
			8 	fyc	i sfat	fdfat		
Plate		Pressure	91,0	183,6	19,8	82,5		
		Tension	-83,2		-19,4	curve b		
				OK		OK		
At holes		Pressure	106,5	183,6	23,2	34,1		
		Tension	-97,4		-22,7	curve d		
				ok		OK		
ANCHOR R	ING	Attachme is not t The load as the s	nt between aken into on the an urface of	n steel p consider nchor rin a cylind	plateand con ration. ng is shaped der hoof.	crete		
					Extreme load	Fatique load		
Loads		sN = Nd*	 10 [^] 3/pi/d	 n	 58,7	3,3		
Donno		sM = Mda	*10^6/pi/	dm^2*4	1300,4	292,3		
Concrete	(N/mm2)	sco = (s	 M-sN)/(ba	 -ts)	9,2	2,1		
pressure		scu = (s	M+sN)/ba	,	9,1	2,0		
Bonding	(Nmm (mm)	m = ec	*//ba-te)	121-212	20955			
benaring	(141101) 11011)	mfat= gM	$\frac{1}{2}$ (ba cs)	12) 212	20755	3289		
Stress	(N/mm2)	sm = m/	$\frac{1}{6*1*ta}$	770 ~21	139.7	21.9		
001000	<	fvd and	fdfat (cu	rve d)	183.6	34.1		
	•	-1	,	_,,	OK	OK		
WELDING	(N/mm2)	g = (gN	 +sM)/ta*c	 1		19.7		
	<	fyd and	fdfat (cu	- rve el	183.6	30.0		
	•	-1- and	(04	,	OK	OK		
Stratifi	cation	Tension ring acc	vertical	to the s DS 412-	urface of th 6.1.7.	ne anchor		
	(N/mm2)	st = (sM	-sN)/(ts+	ta)	27,6	6,4		
		1/2* fud	1/2+64					
	< <	1/2-190	0g 1/2-10	fat	91,8	17,1		

Standardfundament Vestas V47/660-38,7 m. tårn, GWL below Foundation.

í

(

OLE THI	STEv	
Rådg. Ingeniørfirma	ApS FRI	

· · . . •

CALCULATION	ANCHORING - STEEL SECTION IN CONCRETE PLATE
Codes:	DS 411 - Concrete structures DS 412 - Steel structures

LOADS			Extreme load	l	Fatiqu Max.	e load Min.
on surface of	Nd	(kN)	553		569	538
pedestal	Vđ	(kN)	252		96	54
E	Md	(kNm)	8685		4271	2289
	Mvd	(kNm)	515		190	138
At anchor ring	Mda	(kNm)	9192		4464,3	2398,1
Geometry	Oute	er dia	neter	ds =	3015	mm
pedestal	Pede	estal 1	height	hs =	2011	mm
poucoul	Plat	e thi	ckness	ts =	15	mm
	Widt	ch of a	anchor ring	ba =	150	mm
Concrete plate	Plat	te thi	ckness	t1 =	1000	mm
				tu =	200	mm
Anchor	Numl	ber (1	/2*no of Z)	nf =	45	stk
reinforcement:	Dia	neter		df =	25	mm
Material:	Con	crete		fck =	30	N/mm2
	Rei	nforce	ment	fyk =	550	N/mm2
Safety class	nor	mal	gc = 1,	80	gcfat =	= 2,00
Control class	nor	mal	gs = 1,	, 40	gsfat :	= 1,60
ANCHOR STRESS	Attachment between steel plate and concrete is not taken into consideration.					
	The load on the anchor ring is shaped as the surface of a vertical cylinder hoof.					
	s	= Nd*1	.0^3/pi/dm +-	- Mda*10	^6/pi/dm^	2*4

Fc = 2*dc*s+ Ft = 2*dt*s-

		Extreme load	Fatique Max.	load Min.
Line load (N/mm)	8+	1359	692	396
	s-	-1242	-571	-282
Total load (kN)	Fc	4261	2274	1389
(,	Ft	3557	1550	704

FRI

OLE THISTE

Rådg. Ingeniørfirma ApS

Sag 97.069 Dato 97.09.01

(

(

Side 27 af 29

Sag 97.069 Dato 97.09.01

(

OLE THISTED Rådg. Ingeniørfirma ApS FRI

BEARING PRESSURE	on the concrete, under/over the anchor ring						
	Bearing pr	essure sl =	s+/ba an	d s-/(ba-1	ts)		
	Control for local breaking: (see sketch) bl = bf = dm*pi/nf = 209,4 mm						
	Condition A1 = ba*b1 A = bf*(k flcd = squ	dl<=4*bf (ide 5 ba+2*4*bf) ct(0.5*A/Al)*	et db=0) fck/gm (N/mm2)			
	Fatique co	ontrol accord	ing to Aa	s-Jakobse	ns		
	log n = (:	l-smax/fcdfat)/0.0064/	(l-smin/s	max)		
Splitting is insured by the cross rem ment in top and bottom of plate.					rce-		
		Extreme load		Fatique Max.	load Min.		
Congresso strong		 9 1		4 6	2.6		
N/mm2	sl-	9,2		4,2	2,1		
Breaking	flcd =	41,1 OK					
Number				253,3 OI 221,7 OI	ĸ		
10g							
ANCHORRING REINFORCEMENT	The shear	stress in co	oncrete is	s not comp	outed.		
• •	On the safe side, the hoops are absorbing the full amount of pressure and tension.						
The stress in the reinforcement is: sb = F*10 ³ /(nf*2)/(2*pi/4*df ²) fyd = fyk/gs (N/mm2) Fatique stress (DS 412-B.6.6.1) curve b fdfat = (k*10 ¹² /10 ⁷) ^(1/m) /gsfat*f1 f1 = 1.00/1.10/1.15 for Fe360/Fe430/Fe510							
					ь 10		
		Extreem load	Fatique Max.	load Min.	Width		

		load	Max.	Min.	
Stress in	sb+	192,9	102,9	62,9	40,1
reinforcement	sb- 	161,0	70,2	31,9	38,3
	fyd = fdfat =	392,9			92,5
		OK			OK

(

OLE THISTER Rådg. Ingeniørfirma ApS FRI

PUNCHING	Control of shear stress outside the anchor reinforcement. Control perimeter: Af = (t1-75)*(pi*dm+2*(300+2*(t1-75))) = 12695 *10^3 mm2						
	Accordin t = F*10	ng to DS 411-6.2.4.2 mm)^3/Af <= 0.12*2/sqrt()	ust fck)*fcd				
	Fatique control according to Aas-Jakobsens						
		Extreme load	Fatique Max.	load Min.			
Shear stress N/mm2	 tc tt	0,34 0,28	0,18 0,12	0,11 0,06			
	 td =	0,73 ок					
Number log n => 7			163,4 (170,6 (ЭК ЭК			
TRANSVERSE	Vd picks sc = Vd	s up the side pressure 10 ³ /ds/(t1-tu) Extreme load	on the co Fatique Max.	load Min.			
Concrete stress	 SC	0,10	0,04	0,02			
N/mm2	fcd =	16,7 ОК					
TORSION	The mome bearing concrete between taken in Accordin (Fc+Ft)	ent is picked up by fr surface between ancho e. The star reinforcem steel plate and concr nto consideration ng to DS 411-6.2.2.4 *my*dm/2000 => Mvd Extreme load	fiction in or ring and eent and ac rete, are r - my = 0.5 Fatique Max.	the hesion hot bot load Min.			

Standardfundament Vestas V47/660-38,7 m. tårn, GWL below Foundation.

Sag 009-97 Dato 97.10.22

ł

THISTED A

Standardfoundation for :

Vestas V47/660 - 38,7 m. tower.

Groundwater level below foundation

The below mentioned concrete and reinforcement amount is theoretical calculated and have to be checked before order.

CALCULATION OF CONCRETE AMOUNT

Plate dimension	= 8300 mm			
Height at socket	=	1000 mm		
Height at edge	=	800 mm		
Socket diameter	=	3015 mm		
Socket height above plate	=	1300 mm		
Settling of concrete inside socket	=	305 mm		
Thickness of cleaning layer		100 mm		
Plate	=	62,0 m ³		
Socket	=	7,1 m ³		
Total concrete amount	=	69,1 m ³		
Cleaning layer amount	=	6,9 m ³		

CALCULATION OF REINFORCEMENT AMOUNT

	Dim.	Pcs.	Lenght	Weight	
Cross wise reinforcement					
in the bottom	25	64	8200	2083	kg
Cross wise reinforcement					-
in the top	20	40	8200	833	-
	20	24	2500	152	-
	20	16	2800	114	
	20	8	3250	66	-
					-
Edge bows	20	52	1990	263	-
Star reinforcement	20	45	2700	309	
Anchor U-bows	25	45	3270	584	-
Ring bows	20	3	-	48	-
Total reinforcement weight			=	4453	kg

Supports for top reinforcement is placed in the necessary amount.

Vestas V47/660 - Amount of concrete and reinforcement - Guidance